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Abstract

Secular declines in U.S. Treasury yields almost entirely happened within three-day

event windows around FOMC announcement dates. Cumulative yield changes during

these short windows can explain the secular decline in the yield curve. This factor

contains essential information on excess bond returns orthogonal to observed yields

and outperforms well-known proxies for interest rate trends in predicting excess bond

returns. Attributing the trend to the cumulative effects of monetary policy, we estimate

a dynamic term structure model with an unspanned stochastic trend to explain these

empirical facts. The model can be applied to daily data and is thus amenable to high-

frequency studies of monetary policy transmission. We propose a regression-based

estimation algorithm that can be executed instantaneously. The model suggests that

the secular declines in Treasury yields over the past three decades were primarily due

to reductions in expected interest rates. Monetary policy mainly reduced expected

interest rates before the ZLB episode and compressed term premia between late 2008

and early 2012 on FOMC announcement dates.
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1 Introduction

Expected interest rates are a crucial channel through which monetary policy affects the

economy. The U.S. policy rate has decreased steadily over the past three decades, so it

is reasonable that expected interest rates should reflect this downward trend. However,

standard new Keynesian and affine term structure models suggest that expected interest

rates must revert to a constant at long maturities because the models assume that the short-

term interest rate is stationary. We build a dynamic term structure model to reconcile the

empirical fact with model implications. The model shows that the cumulative effects of

monetary policy have caused secular declines in all Treasury yields by reducing the long-run

expectations of interest rates and contains crucial information about excess bond returns

beyond observed yields.

U.S. Treasury yields have been shifting downwards since the 1980s. The literature has

found that persistent variations in macroeconomic variables are essential for determining the

downward trend of interest rates. For example, trend inflation, the real interest rate trend,

and the nominal short-term interest rate trend all contain important information about the

fluctuations in the long-run expectations of interest rates, that is, their stochastic trends.

Meanwhile, monetary policy strongly influences the yield curve. The short end is closely

tied to the policy interest rate, and the medium- to long-term yields are also related through

no-arbitrage conditions. An important open question is whether the secular decline in the

yield curve is attributable to monetary policy and what components of the yield curve are

mainly responsible for the fall.

We quantify the critical effects of monetary policy on the secular trends in U.S. Treasury

yields in two steps. First, we establish some empirical facts about monetary policy and

Treasury yield trends. One crucial point is that the cumulative changes in Treasury yields

during three-day windows around monetary policy announcement dates contain essential

information for predicting excess bond returns. The prediction performance is superior to

existing proxies for the persistent variations in interest rates such as trend inflation (π∗
t ),

natural interest rate (r∗t ), and trend nominal interest rate (i∗t ≡ π∗
t + r∗t ). Second, we

estimate a dynamic term structure model with shifting endpoints to account for the trend

explicitly. According to this model, significant fractions of expected yields decline during

FOMC announcement dates, while monetary policy has much smaller effects on risk premia.

A simple illustration of the critical effects of monetary policy on the secular decline in

yields is provided in Figure 1. The construction of the series follows Hillenbrand (2021). For

each yield, the red curve assumes that it changes only during the three-day event windows

from the day before to the day after the FOMC announcement dates (FOMC windows). In
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other words, we set the daily yield changes outside the event windows to zero and cumu-

latively sum the daily changes over time. We label the changes in the n-year yield during

the FOMC windows ∇y
(n)
t and denote the first principal component across all maturities

by ∇yt. The grey curve depicts the cumulative yield changes outside the three-day event

windows. Since 1990, the changes in yields during FOMC windows have steadily decreased

and fitted the observed yield series closely. In contrast, the cumulative changes outside the

FOMC windows appear stationary.

Figure 1 about here.

This strong link between yield changes during FOMC windows and Treasury yield trends

is the core of our analysis. We establish two stylized facts about FOMC windows and

Treasury yield trends. First, the first principal component1 of the changes in all yields during

FOMC windows captures the common downward trend for Treasury yields. We show this in a

cointegration regression and a VAR model with unobserved trends (Del Negro et al. (2017b),

Harvey (1989)). In the VAR exercise, we allow for common and yield-specific trends for each

yield. The former is highly correlated with ∇yt while the latter is almost flat. It corroborates

the well-known fact that the nominal Treasury yields of different maturities are cointegrated

(Campbell and Shiller (1987), Hall et al. (1992)), and we establish that the cointegration

trend is caused by monetary policy. There is a long tradition of relating the interest rate

trend to the declining trend of inflation, such as Kozicki and Tinsley (2001) and Cieslak and

Povala (2015), but Bauer and Rudebusch (2020) document that trend inflation “leaves a

highly persistent component of interest rates unexplained” and that the trend real interest

rate is also necessary for explaining Treasury yield trends. Similar to Bauer and Rudebusch

(2020), we attribute the common trend for Treasury yields to a nominal interest rate trend.

A crucial difference is that our trend variable, ∇yt, is explicitly related to monetary policy,

whereas the trend variable in Bauer and Rudebusch (2020) is attributed to the natural

interest rate and trend inflation. Our interest rate trends over the last three decades were

determined on a few special dates. In contrast, existing explanations of interest rate trends,

including Bauer and Rudebusch (2020), suggest that the trends behaved smoothly and no

sets of dates were significantly more consequential than others for determining the trends.

Our second stylized fact is that the yield changes during the FOMC windows are crucial

for explaining bond risk premia. Treasury yields are cointegrated with ∇yt. Deviations of

yields from ∇yt quickly revert, with 50% of the deviation eliminated within a quarter. Con-

sequently, ∇yt helps predict future yields and excess bond returns. For the same reason, the

1Like the observed yields, the first principal component of the cumulative changes during FOMC windows
can be interpreted as the average level across all maturities. See Figure 3 for an illustration.
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literature has found that including proxies for the cointegration trend in predictive regres-

sions for excess bond returns results in substantial gains in predictive power. For example,

Cieslak and Povala (2015) add the long-run inflation trend π∗
t and Bauer and Rudebusch

(2020) include long-run nominal interest rate i∗t in the predictive regressions and find sta-

tistically and economically significant coefficients on the trend variables and considerable

improvements in the R2. Cieslak and Povala (2015) argue that trend inflation controls the

expected yields component in observed yields that is orthogonal to the risk premium. We

find similar results for ∇yt, but we also find that ∇yt contains essential information about

the term premium component that is orthogonal to observed yields. Overall, ∇yt better cap-

tures the cointegration trend of Treasury yields and further improves the predictive power

relative to existing proxies for interest rate trends.

We estimate a dynamic term structure model with a stochastic trend in the state vector to

understand how monetary policy shapes the yield curve. We incorporate∇yt as the empirical

proxy for the stochastic trend of states. A crucial difference from canonical dynamic term

structure models is that those models assume that the state variables follow a stationary

VAR process. By construction, those models imply that expected short-term yields in the

long-run future converge to a constant, and thus, fluctuations in the long-term yields must

be captured by risk premia. On the contrary, our model allows stochastic variations in

the limiting long-term expectations of short-term yields. Thus, the secular declines in the

long-term yields can be due to falling expected short-term yields.

Using the dynamic term structure model, we find that the expected short-term yields

(risk-neutral yields) have decreased substantially since 1990 and that a significant fraction

occurred during the three-day FOMC windows. For example, the 10-year risk-neutral yield

has declined by 7.5 percentage points since 1990 and by 5.2 percentage points during the

FOMC windows. Meanwhile, the term premia decreased by 2.5 percentage points during

the FOMC windows. We also regress changes in risk-neutral yields and term premia during

FOMC windows on high-frequency monetary policy shocks. The responses of risk-neutral

yields are several times stronger than the responses of term premia. For example, the 10-

year risk-neutral yield increases by 0.56 percentage points when the policy rate unexpectedly

increases by one percentage point, while the 10-year term premium only increases by 0.08

percentage points. The analysis implies that the effects of monetary policy on Treasury

yields are mainly attributable to responses of risk-neutral yields, which is consistent with

the predictions of standard new Keynesian models.

In the dynamic term structure model, we define interest rate trends as the “endpoints”,

which are the long-run limits of expected yields2: y
(n)∗
t = lims→∞ Et

[
y
(n)
t+s

]
, where y

(n)
t+s is

2Note that the endpoints differ from risk-neutral yields. The risk-neutral yield for maturity n is the
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the n-year yield at time t + s. Our model shows that y
(n)∗
t for all maturities can be well

approximated by linear transformations of ∇yt, which is consistent with the cointegration

regression results. The model implies that a reduction in the policy rate announced by

the FOMC leads to a permanent downward shift in the long-run expectations of the entire

yield curve. Therefore, expected future short-term yields and risk-neutral yields decrease.

This point is, again, consistent with the monetary policy transmission mechanism in standard

new Keynesian models that monetary policy mainly affects expected interest rates. However,

standard new Keynesian models are stationary, and thus y
(n)∗
t is constant by construction.

To this end, our analysis suggests that monetary policy shocks can have larger and more

persistent effects than implied by standard new Keynesian monetary models.

Our empirical identification strategy is related to the monetary policy literature using

high-frequency shocks. The key assumption is that the only factor affecting interest rates

during the short event window around the FOMC announcement is the monetary policy

decision. We follow this strategy to identify ∇yt as a consequence of monetary policy de-

cisions, similar to, for example, Gürkaynak et al. (2005a) and Hanson and Stein (2015). A

common practice in this literature is to regress dependent variables on high-frequency mon-

etary policy shocks to study the marginal effects of monetary policy. We contribute to the

literature by documenting that the cumulative effects of monetary policy accounts for most

of the variations in the yield curve.

A modeling contribution of our paper is that our model can be estimated at high fre-

quencies, and the estimation is fast because we rely on a regression approach that avoids

numerical optimizations. Our empirical proxy for the trend is available at the daily or even

intraday frequency. Macroeconomic trend variables are usually observed at low frequencies,

monthly at best. For example, the dynamic term structure model with shifting endpoints in

Bauer and Rudebusch (2020) is estimated at the quarterly frequency because the key vari-

able, the trend interest rate, is observed quarterly. This is problematic when we analyze the

effects of monetary policy shocks on the yield curve using high-frequency regressions, such

as Hanson and Stein (2015). Since our proxy for the trend comes from daily yield changes

on specific event dates, it is easy to construct and amenable to analyzing term premia at

high frequencies.

Related Literature A large body of literature studies the effects of monetary policy

on the yield curve. The standard approach is to regress changes in yields or forward rates,

average expected short-term yields between t and t + n. For example, the 10-year risk-neutral yield is
1
nEt

[∑9
s=0 y

(1)
t+s

]
+ constant, while the endpoint for the 10-year yield is y

(10)∗
t = lims→∞ Et

[
y
(10)
t+s

]
. In

stationary affine term structure models, the former can vary over time, but the latter is constant.
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usually within short event windows containing monetary policy announcements, on estimated

monetary policy shocks or study the impulse responses of yields to the monetary policy shock

in a structural VAR. For example, Kuttner (2001), Gürkaynak et al. (2005a,b), Hanson and

Stein (2015), and Bauer and Swanson (2022b) show that high-frequency monetary policy

shocks have significant effects on short- to long-term yields. Using VAR methods, Wright

(2012), Gertler and Karadi (2015), and Jarociński and Karadi (2020) also find consistent

results. Our analysis studies the cumulative effects of monetary policy. A closely related

paper is Hillenbrand (2021), which documents that the secular declines in U.S. Treasury

yields since the late 1980s almost entirely occurred during the three-day FOMC windows. We

extend his analysis to show that the cumulative effects of monetary policy contain important

information on expected future short yields and the term premia and help explain interest

rate trends in a structural model.

The secular decline in interest rates has drawn wide attention. Popular explanations

of the secular decline include the global savings glut (Bernanke (2005)), a lack of capital

investment opportunities (Summers (2014)), a slowdown in productivity growth (Gordon

(2017)), a fall in the price of capital (Eichengreen (2015)), demographic changes (Gagnon

et al. (2021), Carvalho et al. (2016)), and an increase in the liquidity of Treasury securities

(Del Negro et al. (2017a)). Hillenbrand (2021) documents that the secular decline happens

within short event windows around FOMC announcements, and we explore the implications

of the FOMC trend for predicting interest rates.

A benchmark for predicting excess bond returns uses linear combinations of current yields

as predictors, such as Fama and Bliss (1987), Campbell and Shiller (1991), and Cochrane

and Piazzesi (2005) among many others. It is widely documented that current yields don’t

contain all the information about future yields and incorporating macroeconomic predic-

tors significantly improves predictive power (Kozicki and Tinsley (2001), Ludvigson and Ng

(2009), Duffee (2013), Joslin et al. (2014), Cieslak and Povala (2015), Bauer and Rudebusch

(2017), Bauer and Hamilton (2018), Bauer and Rudebusch (2020)). Our contribution is

to document that the cumulative effects of monetary policy serve as a critical macroeco-

nomic trend and capture essential information about the risk-neutral yield and term premia

components of the yield curve.

Canonical dynamic term structure models assume that the state variables determining

the yields follow a stationary VAR process (e.g., Kim and Wright (2005), Wright (2011),

Joslin et al. (2011), Gürkaynak and Wright (2012), Adrian et al. (2013)). These models are

ill-suited for studying the determinants of interest rate trends because long-run expected

short-term rates converge to the unconditional mean. Incorporating a random walk trend

in the state vector, Bauer and Rudebusch (2020) find that the secular declines in interest
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rates are mostly due to reductions in long-run expected yields driven by the downward trend

in the nominal short rate. We also find that the expectations hypothesis component drives

the majority of the secular decline, but we relate the time-varying long-run expectation to

the cumulative effects of monetary policy. Piazzesi (2005) includes monetary policy rate

as an observed state variable in an affine term structure model and finds that monetary

policy helps match the whole yield curve. A key difference is that Piazzesi (2005) uses the

federal funds target rate to measure monetary policy, while we use the cumulative sum of

high-frequency interest rate shocks. We show that the latter fits the yield trends better.

Furthermore, the monetary policy variable is spanned by the yields in Piazzesi (2005), but

not in our term structure model. The latter is consistent with our regression results that

adding the monetary policy variable significantly improves the predictive power for excess

bond returns relative to observed yields.

The rest of the paper is organized as follows. Section 2 formally describes the construction

of ∇yt and presents evidence that long-run trends in monetary policy and Treasury yields are

cointegrated. Section 3 estimates excess bond return prediction regressions to show that the

yield changes during FOMC windows contain important information about the yield curve

that the observed yields don’t capture. Section 4 estimates a dynamic term structure model

with a stochastic trend to explain the empirical facts and study the effects of monetary policy

on risk-neutral yields and term premia. Section 5 examines whether the monetary policy

trend simply reflects its reactions to macroeconomic trends and shows that monetary policy

has unique roles for determining interest rate trends. Section 6 concludes.

2 FOMC and the Yield Curve

2.1 The FOMC Filter

We apply the Hillenbrand (2021) filter to daily U.S. Treasury yields estimated by the

Federal Reserve Board using the method of Gürkaynak et al. (2007). The filter divides the

sample into two parts: FOMC windows consisting of dates t − 1, t, t + 1 for each FOMC

announcement date t, and non-FOMC windows consisting of the rest dates. Then, the filter

computes the cumulative sums of daily yield changes on each subsample. Equivalently, the

filter assumes that the yields only change within a given subsample and remain constant on

the other. Following Hillenbrand (2021), our sample starts from June 5, 1989.
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Formally, the filter is defined as

∇y
(n),W
t = y

(n)
t0 +

t∑
s=t0+1

(
y(n)s − y

(n)
s−1

)
1W (s) , (1)

where t and s denote daily dates, t0 is the first date of the sample, y
(n)
s is the log n-year

Treasury zero coupon yield on date s, 1W () is an indicator function for the set W , and

W ∈ {FOMC, non − FOMC} is the set of dates either for the FOMC or the non-FOMC

window. In the following, we denote the FOMC-window changes in the n-year yield by ∇y
(n)
t

and the first principal component of the FOMC-window changes in all yields by ∇yt, unless

we need to distinguish the FOMC-window from the non-FOMC-window series.

As shown in Figure 1, changes during the FOMC windows almost perfectly capture the

secular declines in different yields. Figure 2 collects cumulative yield changes during FOMC

announcement windows for different maturities in the top panel and plots the observed

yields of the respective maturities in the bottom panel. Overall, short-term yields have

declined more than medium- to long-term yields during FOMC windows, but there is clearly

a common downward trend for all series. The dispersion across different maturities in the

top panel is more stable than in the bottom panel, indicating a more stable slope of the

FOMC-filtered yield curve than the observed one. The stable slope of the cumulative yield

changes during the FOMC windows suggests that monetary policy affects different yields in

roughly constant proportions, indicating that the short-rate expectations component should

be more affected by monetary policy than the term premia. We show more formal evidence

of this point in Section 3 and Section 4.

Interestingly, rises and falls in the federal funds rate do not appear to have symmetric

effects on Treasury yields, especially for medium and long maturities. The federal funds rate

increased steadily around 1995, between 2005 and 2008, between 2015 and 2019, and from

2022 to now. But these increases in the policy rate were not accompanied by increases in the

medium- and long-term Treasury yields, except for the most recent period. This is also true

for changes during the FOMC window. When the FOMC increased the federal funds rate

during monetary policy meetings, the Treasury yields barely increased. Even for the most

recent tightening episode, Treasury yields did not increase much during FOMC windows.

The discrepancy in behaviors between the federal funds rate and Treasury yields suggests

that changes in Treasury yields during the FOMC windows are more informative about the

yield curve dynamics than changes in the federal funds rate. This is why we do not use the

federal funds target rate as a state variable for the yield curve as in Piazzesi (2005), and

we show that the federal funds target rate is not a good proxy for interest rate trends in
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Section 4.

Figure 2 about here.

The similarity between the two panels in Figure 2 motivates a representation of the

FOMC-window series by the principal components as the case for observed yields. In Fig-

ure 3, we summarize the yield curve and its filtered components by their first three principal

components. The weighting matrix is normalized such that each principal component’s

weights on all yields sum to 1. The cumulative changes in yields during FOMC windows in-

herit a similar factor structure as the original yields: the first principal component accounts

for 97% of the total variation, and the second accounts for almost the remaining variation;

the factor loadings prompt the level, slope, and curvature interpretations of the first three

principal components. The level factors of the observed and the FOMC-window yields are

highly correlated, and the latter accounts for almost all the downward trends of the former.

The slope factor of observed yields is more volatile than that of the FOMC-filtered yields.

Figure 3 about here.

2.2 Yield Changes and Monetary Policy Shocks

Observed changes in the Treasury yields during the FOMC windows are caused by mone-

tary policy, but monetary policy endogenously responds to macroeconomic conditions. How

much do the daily changes in the Treasury yields around FOMC announcement dates reflect

the causal effects of monetary policy? To distill the unexpected interest rate changes caused

by monetary policy, a standard approach in the monetary policy literature uses changes

in the Fed Funds futures rates or Eurodollar futures rates around FOMC press releases to

measure unexpected changes in monetary policy (for example, Kuttner (2001); Gürkaynak

et al. (2005b,a); Bauer and Swanson (2022a,b). Some other authors use observed changes

in Treasury yields during the same FOMC windows as ours to measure monetary policy

changes (e.g., Hanson and Stein (2015)).

We compare the cumulative sums of high-frequency Eurodollar futures shocks3 with the

cumulative changes in Treasury yields during the three-day FOMC announcement windows.

The Eurodollar shocks are changes in the futures rates on ED1-ED4, the contracts that

expire in the current quarter up to three quarters in the future, during 30-minute windows

3The data are obtained from Michael Bauer’s webpage for replication materials for Bauer and Swanson
(2022b). We plot the Eurodollar futures shocks because the sample coverage is longer. Gürkaynak et al.
(2007) show that Eurodollar futures are the best predictors of future federal funds rates at horizons beyond
6 months and are as good as Fed Funds futures at horizons less than 6 months.
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around FOMC announcements. For the Treasury yields, we focus on the 1- and 10-year

yields to represent the short and long ends of the yield curve.

Table 1 presents summary statistics of the Eurodollar futures shocks and the FOMC-

window changes in the 1- and 10-year yields. All variables are summed within each month.

The mean values are negative but within one standard deviation away from zero. Compared

with the 3-day changes in the observed yields, the Eurodollar shocks are closer to zero on

average and less volatile. However, the extreme values of the Eurodollar shocks and the

changes in observed yields have similar magnitudes. For example, the minimum values of

the ED1 shocks and the 10-year yield changes are -0.55 and -0.45 percentage points, and the

maximum values of the ED4 shocks and 1-year yield changes are 0.24 and 0.26 percentage

points, respectively.

Table 1 about here.

Although the literature uses the high-frequency interest rate futures shocks as proxies for

mean-zero monetary policy shocks and the mean values of the Eurodollar futures shocks are

indeed indistinguishable from zero, their cumulative sums over time exhibit clear downward

trends. Figure 4 plots cumulative sums of the intraday Eurodollar futures rates on FOMC

announcement dates, as well as the daily changes in the 1- and 10-year Treasury yields from

the day before to the day after FOMC announcement dates4. We plot the end-of-month

values of each series. The cumulative changes in the intraday Eurodollar futures rates and

Treasury yields all exhibit strong downward trends in the sample, which are highly correlated.

The cumulative sums of high-frequency Eurodollar futures shocks declined by 4 percentage

points over the last three decades, and ∇y
(10)
t declined by 6 percentage points. The figure

suggests that the daily changes in the Treasury yields around FOMC press release dates are

good proxies for the causal effects of monetary policy.

In summary, the cumulative changes in Treasury yields during three-day FOMC an-

nouncement windows strongly correlate with the cumulative sums of monetary policy shocks.

Therefore, we use the cumulative changes in Treasury yields to summarize the historical

stances of monetary policy.

Figure 4 about here

2.3 Unit Roots and Cointegration

It is well-known that nominal Treasury yields are persistent and can be modeled as

unit-root processes. We investigate whether the cumulative effects of monetary policy an-

4Between meetings, the series remain at the values observed at the previous announcement window. In
this way, we obtain daily values for these series.
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nouncements can account for the trend in Treasury yields using cointegration regressions and

error correction models. Formally, we estimate a dynamic OLS regression for cointegrated

processes (y
(n)
t , τ t):

y
(n)
t = β0 + β⊤

1 τ t + ut, (2)

where y
(n)
t is a Treasury yield, τ t is a scalar or vector of proxies for the trend. Following

Stock and Watson (1993), we include leads and lags of the first-differenced y
(n)
t and τ t in

the regression to estimate β0 and β1. We focus on the 10-year yield and choose four leads

and lags. The trend proxies include the trend inflation π∗
t , trend real interest rate r∗t , trend

nominal interest rate i∗t , and the first principal component of cumulative changes in all

yields during FOMC windows ∇yt. In Appendix C, we report estimation results for the

first principal component of all yields, which can be interpreted as the average across all

maturities. Due to the availability of the macroeconomic trend series, the data are quarterly

and range from 1989Q2 to 2018Q1.

Table 2 reports the point estimates β̂0 and β̂1 as well as persistence test statistics for

the cointegration residuals ût = y
(n)
t − β̂0 − β̂

⊤
1 τ t. The standard errors for the regression

coefficients are Newey-West with six lags. The first column regresses y
(10)
t on a constant, so

the residual is the demeaned yield. The first-order autocorrelation coefficient (ρ̂) is 0.95 and

the Augmented Dickey-Fuller (ADF) and Phillips-Perron (P.P.) unit root tests do not reject

the null hypothesis that the demeaned yield has a unit root. Moreover, the low-frequency

stationary test of Müller and Watson (2013) strongly rejects stationarity. These results are

consistent with the well-known fact that interest rates are highly persistent.

The second column of Table 2 regresses cumulative changes in the 10-year yield outside

FOMC windows (∇y
(10),non−FOMC
t ) on a constant and tests whether the residual contains a

unit root. The intercept term is 8.48 percentage points, while the initial value of the 10-year

yield in our sample is 8.56 percentage points. This indicates that, on average, the 10-year

yield barely changed between FOMC meetings during the last three decades. In contrast, the

average value of the 10-year yield on the full sample is 4.78, indicating a significant secular

decline. The first-order autocorrelation coefficient of ∇y
(10),non−FOMC
t is much smaller than

that of y
(10)
t , and all test statistics strongly indicate that ∇y

(10),non−FOMC
t is stationary. Note

that the FOMC and non-FOMC windows are disjoint, and any date belongs to one of them,

1 = 1FOMC (s) + 1non−FOMC (s) , ∀s. (3)

So, the filtered yields on the two sets of dates must sum up to the observed yield:

y
(n)
t − y

(n)
0 =

(
∇y

(n),FOMC
t − y

(n)
0

)
+
(
∇y

(n),non−FOMC
t − y

(n)
0

)
. (4)
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The first two columns of Table 2 suggest that the 10-year yield contains a persistent stochastic

trend, but the second term on the right-hand side does not, so the unit root of the 10-year

yield must be due to the cumulative effects of monetary policy announcements ∇y
(10),FOMC
t .

The remaining columns of Table 2 report the results of cointegration regressions using dif-

ferent trend proxies as independent variables. We consider macroeconomic trends, including

trend inflation (π∗
t ), trend inflation and natural interest rate (r∗t ), and trend nominal interest

rate (i∗t = π∗
t + r∗t ). These macroeconomic trends are compared with ∇yt to study whether

the roles of monetary policy in determining the yield curve merely reflect the impacts of

macroeconomic activities. The first specification includes only π∗
t , which is motivated by

Cieslak and Povala (2015). The resulting cointegration residual is almost as persistent as

the 10-year yield, and the test statistics find no evidence for stationarity. The inadequacy of

detrending with only π∗
t suggests that the role of monetary policy in detrending the yields

should not be interpreted as a Taylor rule that responds only to changes in inflation. Us-

ing a combination of π∗
t and r∗t , or i

∗
t , or ∇yt as the detrending variable, the cointegration

residuals are much less persistent than the original 10-year yield. Among these residuals,

the one produced by ∇yt has the most significant statistics against the unit root hypothesis

and the weakest statistic against stationarity. Furthermore, the error-correction coefficient

is estimated as −0.46 and is strongly significant. When the 10-year yield is high relative to

∇yt, it quickly reverts to this trend, with half of the difference eliminated within a quarter.

Therefore, knowing the cumulative effect of monetary policy is quite helpful in predicting

Treasury yields.

Although the residuals produced by i∗t and ∇yt exhibit similar persistence properties, the

regression coefficients on the two variables are quite different. The trend nominal interest rate

i∗t has a coefficient of 2.03 in the cointegration regression, while ∇yt has a coefficient of 1.27.

Accordingly, the yield moves almost one-to-one with the long-run trend of monetary policy,

and hence, simply subtracting the latter from the former produces a stationary residual.

The large slope coefficient suggests that the trend nominal interest rate is “flatter” than the

trend of the Treasury yield. If trend variables are used without scaling up or down to proxy

the trend of the Treasury yield, the long-run trend of monetary policy provides the best fit.

In summary, the persistent variations in Treasury yields are well explained by the cu-

mulative effects of monetary policy, which appear to be quite different from simply reacting

to macroeconomic conditions. In Table A1, we report the results for detrending the first

principal component of all yields. Interestingly, the only residuals for which the ADF and

P.P. tests significantly reject the unit root hypothesis are the demeaned ∇ynon−FOMC
t and

the regression residual produced by ∇yt.

Table 2 about here.
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2.4 A Trend-VAR Model

Motivated by the results of the cointegration regressions, we estimate a VAR model with

unobservable trends to further illustrate that monetary policy can explain a common trend

for all yields. The VAR model also sets the stage for the state structure of our dynamic term

structure model in Section 4.

We estimate an N × 1 vector process Yt that can be decomposed as

Yt = ΓȲt + Ỹt, (5)

where Ȳt is an N̄ × 1 vector of stochastic trends, Γ is an N × N̄ matrix of loadings on the

trends, and Ỹt is an N × 1 vector of stationary component. The vector Yt = (Y
(n)⊤
t ,∇yt)

⊤

consists of a set of Treasury yields, Y
(n)
t , and the first principal component of the FOMC

window yields, ∇yt. The dynamics for the trend and stationary components are, respectively:

Ȳt =Ȳt−1 + ηt,

Ỹt =Φ(L)Ỹt−1 + ũt, (6)

where Φ(L) =
∑p

l=1 ΦlL
l is a polynomial of lag operators with all eigenvalues within the

unit circle. The (N̄ +N)× 1 vector of shocks is i.i.d and distributed as[
ηt

ũt

]
∼ N

([
0N̄

0N

]
,

[
Ωη 0N̄×N

0N×N̄ Ωũ

])
. (7)

The initial conditions ȳ0 and ỹ0:−p+1 ≡ (ỹ⊤0 , . . . , ỹ
⊤
−p+1)

⊤ are distributed as

ȳ0 ∼N
(
y0, V0

)
,

ỹ0:−p+1 ∼N (0, V (Φ,Ωũ)) , (8)

where V (Φ,Ωũ) is the unconditional variance of ỹ0:−p+1 implied by Equation (6).

The model is estimated using the Bayesian method in Del Negro et al. (2019). The priors

for the VAR coefficients and covariance matrices have a standard form:

p(φ|Ωũ) =N (vec(Φ),Ωũ ⊗ Ω)I(φ),

p(Ωη) =IW(κη, (κη +N + 1)Ωη),

p(Ωũ) =IW(κũ, (κũ + N̄ + 1)Ωũ), (9)

where Φ = (Φ1, . . . ,Φp)
⊤ is the collection of VAR coefficients and φ ≡ vec(Φ), I.W .(κ, (κ+
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m + 1)Ω) denotes the inverse Wishart distribution with mode Ω and κ degrees of freedom,

and I(φ) is an indicator function that equals 0 if the VAR is explosive and 1 otherwise. The

prior for Γ is Gaussian with a diagonal covariance matrix.

The prior for Ωη is conservative to limit the amount of variation attributed to trends. The

matrix Ωη is diagonal with elements 62/1200, which implies that the standard deviation of the

expected change in the trend nominal interest rate over one century is 6 percentage points.

We set κη = 100 so that the priors are tight. The priors for the VAR parameters describing

Ỹ are standard Minnesota priors, with the hyperparameter for the overall tightness equal to

the commonly used value of 0.2, except that the prior for the own-lag parameter is centered

at 0 instead of 1. The prior for the variance Ωũ is an inverse Wishart distribution centered

at a diagonal matrix of 1s, with N + 2 degrees of freedom.

We include the 3-month, 5-year, and 10-year Treasury yields in the vector Y
(n)
t =

(y
(0.25)
t , y

(5)
t , y

(10)
t )⊤. The trend vector includes yield-specific trends and a common trend:

Ȳt = (Ȳ
(n)⊤
t , ȳt)

⊤, where Ȳ
(n)
t is an (N − 1) × 1 vector of yield-specific trends, and N̄ = N .

The loading matrix is

Γ =

[
IN−1 Γ

(n)
(N−1)×1

01×(N−1) 1,

]
(10)

so that the trend for each yield is Γ(n)ȳt + ȳ
(n)
t and the trend for ∇yt is ȳt. Under this

specification, we allow the yield-specific trend ȳt to capture the persistent variations in y
(n)
t

that are not captured by the cointegration relationship. Our sample consists of end-of-month

observations from January 1990 to December 2022.

In the previous literature, the focus on inflation and real interest rate (Del Negro et al.

(2017b), Cieslak and Povala (2015), Bauer and Rudebusch (2020)) is motivated by the Fisher

equation it = rt + πt. Analogously, our formulation can also be viewed as another decom-

position of observed yields. Equation (4) implies that any time series can be decomposed as

the sum of cumulative changes during the FOMC windows and outside the FOMC windows.

So, the specification γ(n)ȳt + ȳ
(n)
t can be viewed as decomposing the trend of y

(n)
t into trends

of cumulative changes during and outside the FOMC windows, respectively.

Figure 5 presents the estimates of the common trend and yield-specific trends. The

common trend ȳt almost coincides with ∇yt with a narrow 95% confidence band, indicating

that ∇yt accounts for a common trend for the Treasury yield curve. For each yield, the

common trend component, γ(n)ȳt, is almost parallel to the yield’s overall trend, and the

yield-specific trend, ȳ
(n)
t , is essentially flat. Therefore, ∇yt contributes to the time variations

in the long-run trends of Treasury yields, and the yield-specific trends act mainly as level

shifters. This is consistent with the cointegration regression results in Table 2: the observed

Treasury yields are cointegrated with average changes in yields during FOMC announcement
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windows, and the cointegration residuals are stationary.

Figure 5 about here.

Figure 5 and Table 2 suggest that the persistent variations in Treasury yields can be

summarized by a single component closely related to ∇yt. Therefore, we model the yield

curve as containing a single stochastic trend in Section 4 and use ∇yt as the empirical proxy

for the stochastic trend.

3 Predicting Excess Bond Returns

When the yields are cointegrated, the trend serves as an anchor for interest rate dynamics.

Therefore, the literature has found that proxies for the trend help predict excess bond returns.

For example, Cieslak and Povala (2015) find that trend inflation captures the expectations

hypothesis component embedded in yields and helps predict excess bond returns. Bauer

and Rudebusch (2020) show that the downward-trending long-run nominal interest, i∗t , helps

predict future excess returns on long-term bonds. Motivated by these facts and the fact

that the yield changes within the FOMC windows account for substantial fractions of the

persistent variations in interest rates, we investigate whether ∇yt also helps predict excess

bond returns and performs better than existing proxies for the trend of interest rates.

3.1 Baseline Regression

We estimate the equation

rxt+1 = α + PC⊤
t β + γτt + εt+1, (11)

where rxt+1 = 1
14

∑15
n=2 rx

(n)
t+1 is the average excess bond return, rx

(n)
t+1 = −(n − 1)y

(n−1)
t+1 +

ny
(n)
t −y

(1)
t is the one-year5 excess return on the n-year bond, PCt is the first three principal

components of the 1, 2, . . . , 15-year yields, and τt is a trend variable. Our candidates for τt

include estimates of the inflation trend π∗
t , the real-rate trend r∗t , the long-run nominal short

rate i∗t = π∗
t + r∗t , and the first principal component of FOMC-window yields ∇yt.

The estimates of π∗
t and r∗t are borrowed from Bauer and Rudebusch (2020), who, in turn,

combine their own estimates of r∗t with other authors’ estimates (Del Negro et al. (2017b);

Johannsen and Mertens (2016); Laubach and Williams (2016); Holston et al. (2017); Kiley

5We report results for the quarterly holding period in Appendix C. Although the R2s are uniformly
smaller than in the annual case, ∇yt still significantly improves predictive power.
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(2020)). For detailed descriptions of the estimates of r∗t and π∗
t , please refer to Bauer and

Rudebusch (2020).

Table 3 shows the regression results. Besides Newey-West standard errors in parentheses,

we also present small-sample bootstrap p-values à la Bauer and Hamilton (2018) in square

brackets. Columns (1) through (6) run the same regressions as in Bauer and Rudebusch

(2020) (Table 2) but on different samples. In the full sample (1989-2018) and the 1994-2018

subsample, both i∗t and ∇yt significantly increase the predictive coefficient on the level factor

(PC1) and the R2 relative to the model with only the yield curve principal components.

Furthermore, ∇yt has a better predictive performance than i∗t . The coefficient on ∇yt is

highly significant with a smaller p-value than i∗t , and the regression with ∇yt has an R2

9 percentage points higher than the R2 with i∗t . The improvement in R2 is the same in

both samples, although the post-1994 sample produces uniformly higher R2s than the full

sample. The coefficient on ∇yt is negative, implying that when currently observed yields are

higher than the cumulative effects of monetary policy (or, ∇yt decreases), future yields are

expected to decrease, and bond prices will increase, so the holding period return is expected

to increase. This is consistent with the results of the cointegration regressions in Table 2.

Table 3 about here.

3.2 Investigating the Mechanisms

To further investigate the predictive mechanism of ∇yt, we conduct three sets of regres-

sions. First, we investigate whether ∇yt alone captures time variations in the expected yields

or term premia. Then, we study why including ∇yt in Equation (11) significantly improves

the prediction performance, and we conduct two regressions. First, we study whether the

yield curve component orthogonal to ∇yt significantly predicts excess bond returns. Second,

we study whether the ∇yt component orthogonal to the observed yields significantly predicts

excess bond returns.

We start by estimating the regression

rxt+1 = α + γτt + εt+1, (12)

which is equivalent to restricting β = 0 in Equation (11). If the expectations hypothesis

holds, rx
(n)
t+1 consists of solely innovations to the conditional expectations of future short-term

yields, which are orthogonal to time-t information. Therefore, significant regressors in the

excess bond return regressions are interpreted as capturing the time-varying term premia. In

Table 4, the trending variables are all insignificant, and the R2s are close to zero. Therefore,
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the trend variables alone don’t capture the variations in the term premia, but control the

expectations hypothesis component in PCt in Equation (11). This finding echoes the result

of Cieslak and Povala (2015, eq. (28)). Note that ∇yt has a positive coefficient, indicating

that when Treasury yields decrease (not holding other factors constant) during the FOMC

window, term premia also decrease. This is consistent with Figure 8, which shows that term

premia have declined during FOMC windows since 1990.

Table 4 about here.

Next, we investigate why ∇yt significantly improves the prediction performance relative

to observed yields. By the Frisch-Waugh-Lovell theorem, the regression coefficient on PCt

in Equation (11) equals the one from regressing rxt+1 on the orthogonalized PCt, and

the latter is the residual from regressing PCt on τt. The coefficient on τt is obtained

similarly. Motivated by this observation, we investigate whether the orthogonalized yields

or the orthogonalized trend contains information about excess bond returns.

First, we estimate

rxt+1 = α + P̃C
⊤
t β + εt+1, (13)

where P̃C
⊤
t denotes the first three principal components of the residuals from regressions of

each yield on the trend variables. Note that we first orthogonalize the yields and then take

the principal components. So, P̃Ct is not the orthogonalized PCt in the Frisch-Waugh-

Lovell theorem. Table 5 presents the results. Here, we want P̃Ct to summarize all the

information in the orthogonalized yields instead of only orthogonalized three principal com-

ponents. Column (1) uses PCt as independent variables. Columns (2) to (6) use P̃Ct

obtained from regressing on respective trend variables. Finally, column (7) uses the first

three principal components of changes in yields outside the FOMC windows, that is, apply-

ing Equation (1) to non-FOMC windows. This is motivated by the identity Equation (4),

although the decomposition does not guarantee orthogonality between the two components

on the right side.

In Table 5, the largest R2s are obtained in column (6), where the yields are orthogonalized

relative to ∇yt. According to the results in Table 4, ∇yt controls the expectations hypothesis

component of the observed yields, so the remaining part of the yields orthogonal to the

expectations hypothesis component better predicts excess bond returns. The coefficient in

PC1 improves from 0.58 to 2.25, suggesting that the cyclical fluctuations of the yield curve

levels relative to the trends induced by monetary policy strongly correlate with the term

premia. In columns (6) and (7), the level factors (PC1) have similar coefficients significantly

higher than that on the level of observed yields. Non-FOMC yield changes also achieve a

similar R2 with the yield components orthogonal to ∇yt, implying that monetary policy
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mainly affects expected yields, and non-monetary policy factors drive the term premia.

Columns (6) and (7) jointly imply that deviations of yields from the monetary policy trend

revert quickly and thus are strongly informative about future yields.

Table 5 about here.

Next, we estimate

rxt+1 = α + γτ̃t + εt+1, (14)

where τ̃t is the residual from regressing the trend τt on all observed yields. Table 6 presents

the results. Orthogonalized trend inflation is insignificant and achieves an almost zero R2.

As noted by Cieslak and Povala (2015), the trend inflation captures the expectations hy-

pothesis component that is orthogonal to the variation in the risk premium. Combining

or summing with r∗t increases the coefficient on π∗
t and R2. The trend real interest rate

contains information on both expected yields and risk premia that is orthogonal to the ob-

served yields. This is consistent with the view of Bauer and Rudebusch (2020):“Accounting

only for the inflation trend on its own, ..., leaves a highly persistent component of interest

rates unexplained.” In our regression results, orthogonalized ∇yt has a coefficient similar to

orthogonalized i∗t , but the R
2 obtained by the former more than doubles the R2 obtained by

the latter. This is strong evidence that ∇yt contains significantly more information on the

term premia than i∗t that is orthogonal to the observed yields.

Table 6 about here.

Since the short-term nominal interest rate is persistent, it is straightforward that mon-

etary policy affects expected future short rates. The literature also finds that monetary

policy shocks move the term premia. For example, Hanson and Stein (2015) find evidence

that monetary policy shocks affect long-term forward rates’ expectations and risk premium

components. Consistent with the literature, our excess bond return regressions provide new

evidence that monetary policy shapes the expected future short yields and risk premia. More-

over, the two components in ∇yt offset each other, so the coefficient on ∇yt is insignificant

in Equation (12).

4 A Term Structure Model with a Stochastic Trend

In this section, we estimate a no-arbitrage dynamic term structure model. The model

highlights the following points:

1. The cumulative effects of monetary policy, ∇yt, determine the persistent variations in

interest rates.
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2. ∇yt helps predict excess bond returns.

3. The secular declines in interest rates were mainly due to reductions in risk-neutral

yields, which occurred mostly when FOMC announced monetary policy decisions.

The dynamic term structure model is proposed by Bauer and Rudebusch (2020). Impor-

tantly, we attribute the trend to a different macroeconomic variable and estimate the model

using linear regressions, significantly improving the estimation speed.

We use lowercase letters to represent scalars and uppercase or bold letters to denote

vectors and matrices. The state vector Xt consists of K linear combinations of yields. As a

standard practice in yield curve modeling, we choose the first five principal components of

the 3-month, 6-month, and 1- to 15-year yields as Xt. Section 2 showed that the yields are

cointegrated, so we model the vector Xt as driven by a scalar stochastic trend τt:

Xt = µ+ Γτt + X̃t, τt = τt−1 + ηt, X̃t = ΦX̃t−1 + Ũt, (15)

with shocks vector i.i.d over time and distributed as[
ηt

Ũt

]
∼ N

(
0,

[
Ωη 01×K

0K×1 Ω̃K×K

])
. (16)

Our estimation framework can be easily extended to allow for vector-valued τ t, and we

present such a general model in Appendix A. Letting Ut ≡ Γηt + Ũt and Zt = (τt, X
⊤
t )

⊤, the

stochastic discount factor is

mt+1 =− δ0 − δ1
⊤Xt −

1

2
Λ⊤

t Λt −
1

2
Λ⊤

t Ut+1, Λt = Σ−1(Λ0 + Λ1Zt), (17)

Ω ≡E[UtU
⊤
t ], ΣΣ⊤ = Ω.

Finally, the first column of Λ1 is restricted to be (IK − Φ)Γ, so that the yields are affine in

Xt instead of Zt. In Appendix A, we show that

y
(n)
t = An +B⊤

n Xt, (18)

where An and Bn satisfy the standard no-arbitrage recursions for zero-coupon yields.

The stochastic trend τt is unspanned by current yields, in the sense that the bond pricing

equation (18) cannot be inverted to express τt as linear combinations of yields. However, τt
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is useful for predicting future yields because

Et[Xt+1] = (I − Φ) (µ+ Γτt −Xt)︸ ︷︷ ︸
coint. error

+Xt. (19)

The first term is the deviation from the cointegration trend. When the current state Xt

is below the trend, it is expected to increase to catch up with the trend. For the same

reason, τt is informative about expected excess bond returns controlling for Xt. Therefore,

this formulation is essential for explaining the cointegration analysis in Section 2 and the

excess bond return prediction regressions in Section 3.

4.1 Estimation

We estimate the model using two methods. Both methods treat Xt as observable and

let it be the first five principal components of the 3, 4, . . . , 240-month yields. The yields are

interpolated using the Svensson (1994) parameters estimated by Gürkaynak et al. (2007)

and updated by the Federal Reserve Board.

The first method assumes that τt is observable. Following Bauer and Rudebusch (2020),

we label it the “observed shifting endpoint” (OSE) model. Motivated by the statistical

analysis in Section 2, our empirical proxy for τt is ∇yt, the first principal component of

the cumulative daily changes in the cross-section of Treasury zero-coupon yields during

the FOMC windows. The results are quantitatively similar if we use changes during the

FOMC window in individual yields, because all yields change by similar amounts during

the FOMC windows (Figure 2). As Figure 3 shows, the first principal component of the

FOMC-filtered yields accounts for 97% of their variations and closely follows the level factor

of the unfiltered yields. The previous sections also show that ∇yt well accounts for the

common trend of Treasury yields and contains essential information on expected yields and

term premia. Therefore, ∇yt is a good summary of the downward trend of the yield curve

over the past three decades. Our baseline estimation uses monthly observations. We let

the daily changes in yields outside FOMC windows be zero and sum all the daily changes

cumulatively over time. Then, we take the end-of-month values as our monthly observations

of τt and the Treasury yields.

Given observed Xt and τt, we estimate the term structure model parameters using linear

regressions à la Adrian et al. (2013). To account for τt and the unspanning-restriction (A4),

we modify the regression equations and run a restricted OLS. The algorithm selects a set

of excess bond returns and regresses them on the state vector Zt and the estimated shocks

Vt. Following Adrian et al. (2013), we select excess bond returns of the one-month holding
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period for maturities n ∈{6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 84, 120} months. Appendix A

describes the estimation procedures in detail. The linear regression approach requires no

numerical optimization algorithms, making it much faster than the maximum likelihood

approach in Bauer and Rudebusch (2020).

The second method assumes that τt is unobservable. This approach uses only Treasury

yields data and does not attribute the trend to any observed variables. Following Bauer and

Rudebusch (2020), we label this approach the “estimated shifting endpoint” (ESE) model.

Although the model does not explicitly recognize monetary policy as the driver of τt, the

trends generated by the ESE model are quite similar to those generated by the OSE model

using ∇yt as a proxy for τt. We proceed in two steps. First, we infer τt from observed

Xt using the method in Section 2. Following Del Negro et al. (2017a) and Bauer and

Rudebusch (2020), we specify a tight inverse-gamma prior for Ωη with a mean of 62/1200,

which implies that the standard deviation of the change in τt over a century is 6 percentage

points. Meanwhile, the Ωη obtained from the OSE : ∇yt model implies that the standard

deviation of the change in τt over a century is 3 percentage points. Our prior is a conservative

choice that limits the amount of yield variation attributed to the long-run trend, and the

results are quantitatively similar if we use the value of Ωη from the OSE model as the prior

mean. Note that the unobserved trend model estimated here is Equation (15), and Xt

consists of the first five principal components of the yields. Second, we treat the inferred τ̂t

as the observed τt and estimate the model using the OSE method.

4.2 Estimates of Yield Trends

Section 2 established that ∇yt is the cointegration trend for all yields. Now, we inves-

tigate this property in the context of our term structure model. The term structure model

Equation (15) and the bond pricing equation (18) imply that the trend component of the

n-yield is

y
(n)∗
t ≡ lim

s→∞
Et[y

(n)
t+s] = An +B⊤

n µ+B⊤
n Γτt, (20)

and the cyclical component is

ỹ
(n)
t ≡ y

(n)
t − y

(n)∗
t = B⊤

n X̃t. (21)

Figure 6 plots the observed monthly 10-year yield and y
(10)∗
t estimated from different

models. We estimate the ESE model and the OSE models using separately ∇yt, cumulative

sums of ED1-ED4 shocks during 30-minute FOMC windows, or cumulative sums of changes
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in the federal funds target rate6 on FOMC announcement dates as a proxy for τt. Note that

the ESE approach only requires observed yields and infers the cointegration trend τt using

statistical methods, so we can use it to check the validity of the empirical proxies for τt. The

ESE trend closely fits the long-run decline in the 10-year yield. Meanwhile, the OSE: ∇yt

model using ∇yt as an observable proxy for τt provides an estimate of y
(10)∗
t highly correlated

with the ESE estimate. The model results corroborate that cumulative changes in Treasury

yields during the time of FOMC announcements are a major factor in the secular decline in

yields.

Changes in interest rate futures rates during 30-minute event windows around FOMC

announcements are popular measures of monetary policy shocks in the literature. Sec-

tion 2 demonstrated that the cumulative sums of the high-frequency monetary policy shocks

trend downward and strongly correlate with ∇yt. To strengthen the link between mone-

tary policy and the downward common trend in Treasury yields, we use cumulative sums

of high-frequency Eurodollar futures rates as empirical proxies for τt in the OSE model and

report the estimated y
(10)∗
t in Figure 6. The labels ED1-ED4 correspond to the Eurodollar

futures that expire in the current quarter or up to three quarters ahead. Each y
(10)∗
t series

is estimated separately from the respective Eurodollar shocks. The four series are almost

indistinguishable from each other and follow the same pattern as the y
(10)∗
t identified by the

ESE or OSE:∇yt model. Note that ∇yt performed better than the Eurodollar shocks be-

tween 2009 and 2015 to fit the 10-year yield trend, as the Eurodollar shocks were essentially

zero during the ZLB period, while long-term yields continued to decline. Since ∇yt averages

the changes in yields across all maturities, it captures the declines in long-term yields during

the ZLB period. Overall, the trends identified by ∇yt and the high-frequency Eurodollar

shocks outside the ZLB period are very similar, confirming that monetary policy has been a

key driver of secular interest rate trends over the last three decades.

In Figure 6, we also consider the federal funds target rate as an observable proxy for τt

(OSE:FFR target). The y
(10)∗
t series implied by the federal funds target rate exhibits some

downward trend and roughly follows the long-run pattern of the 10-year yield series, but the

fit is much worse than the y
(10)∗
t series implied by other proxies for τt. The federal funds

target rate dropped and then increased too much during the 2000s, whereas the long-maturity

Treasury yields declined almost monotonically during that period. Although Piazzesi (2005)

finds that the federal funds target rate helps an affine term structure model to match the

observed yields, our results suggest that the high-frequency monetary policy shocks and ∇yt

are better at explaining the persistent variations in the yield curve.

Figure 6 about here.

6The data for the federal funds target rate are from Datastream.
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We can compare the model-implied loadings of yields on ∇yt to the regression coefficients

of yields on ∇yt in the data. We use ∇yt as the observed proxy for τt and estimate the model

using the OSE method. The model-implied loading on ∇yt is B⊤
n Γ. Figure 6 plots these

coefficients against maturities n. In the data, the coefficients are slightly larger than one,

rising gradually from the short end, peaking at around the two-year maturity, and decreasing

thereafter. The regression coefficient for the 10-year maturity corresponds to the value in

the last column of Table 2. The model-implied loadings have similar patterns to their data

counterparts and are contained in the 90% confidence intervals of the data estimates. To

account for sampling uncertainty, we simulate 5,000 samples of τt and yields with the same

length as the actual data and estimate the regression coefficients in each simulated sample.

The 90% Monte Carlo interval of the regression coefficient contains the value obtained with

the actual data and also contains the value 1 for all maturities. The latter fact suggests that

our model-implied yield curve moves almost one-to-one with changes in monetary policy,

and monetary policy mainly transmits via the conventional expectations component. Term

premia barely load on the cumulative effects of monetary policy announcements.

Figure 7 about here.

4.3 Cumulative Changes in Expected Yields and Term Premia

During FOMC Windows

The declines in yields around FOMC announcements could have been due to falling

expectations of future policy rates, as suggested by standard linear new Keynesian models,

or falling term premia. One possible mechanism for the decrease in term premiums could

be “reaching for yield” by which yield-oriented investors purchase long-term bonds when

short-term interest rates are reduced by monetary policy (Hanson and Stein (2015)). Other

mechanisms include changes in liquidity premia (Drechsler et al. (2018), Lagos and Zhang

(2020)), redistribution of wealth from risk-averse to risk-tolerant investors (Kekre and Lenel

(2022)), or endogenous changes in investors’ risk aversion (Pflueger and Rinaldi (2022)).

To quantify the cumulative effects of monetary on expected yields and risk premia, we

decompose the yields using the OSE:∇yt model and apply the FOMC filter (Equation (1)) to

each component. Hillenbrand (2021) finds that the term premia have declined by one to two

percentage points around FOMC announcement dates using the Federal Reserve Board’s

stationary affine term structure models (Adrian et al. (2013), Kim and Wright (2005)).

However, the stationary affine models assume that the yields follow a stationary AR(1)

process, so the expected future yields have no stochastic trends by construction. The term

premia, acting as residuals, must capture the declining trends of the yields. In Appendix C,
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we show that the original Adrian et al. (2013) model overestimates the declines in the 10-year

term premium during FOMC windows than the OSE model.

Using the OSE model, we allow the expected yields to capture the declining trend and

investigate whether the expected yields or the term premia have declined around FOMC

announcement dates. We use the first principal component of cumulative yield changes

around FOMC announcement dates, ∇yt, as a proxy for τt. The data frequency is daily. We

obtain the model-implied expected future short-term yields (risk-neutral yields) and term

premia at the daily frequency and apply the filter defined by Equation (1) to each component.

To obtain model-implied yields at the daily frequency, we follow the procedures in Adrian

et al. (2013). First, we estimate the model parameters using end-of-month data. Second,

we compute the principal components of the daily yield curve, Xt, using weights computed

from monthly data. Third, we combine An and Bn implied by the monthly estimation with

daily Xt and τt to get the daily fitted yields and decompositions.

Figure 8 presents the risk-neutral and term premium components for the 5-, 7- and 10-

year Treasury yields. For all yields, the secular declines over the whole sample are mainly

attributable to declines in the risk-neutral component. Furthermore, the changes in the risk-

neutral yields during the FOMC windows account for substantial parts of the secular declines

in the risk-neutral yields. The 5-year risk-neutral yield decreased by 8.5 percentage points

in the full sample and by 4.6 percentage points during the FOMC windows (4.6/8.5=54%).

The 10-year risk-neutral yield decreased by 7.5 percentage points over the entire sample

period and by 5.2 percentage points during FOMC windows (5.2/7.5 = 69%). On the

other hand, the term premia are much less responsive to monetary policy. For example,

the 10-year term premia decreased by 1.4 percentage points in the whole sample and by 2

percentage points during the FOMC windows. Interestingly, term premia decreased more

during FOMC windows than in the whole sample, indicating that term premia bounced up

significantly between FOMC meetings.

Figure 8 about here.

To investigate the effects of monetary policy on risk-neutral yields and term premia

more rigorously, we follow the high-frequency identification literature to regress the two

components of the yield curve on high-frequency monetary policy shocks. The dependent

variables are the daily changes on the announcement date or the changes over the three-day

event windows in the risk-neutral yields and term premia. The independent variable is the

first principal component of ED1-ED4 high-frequency shocks (MPS) or the orthogonalized

monetary policy shock constructed by Bauer and Swanson (2022b), eliminating the puzzling

“Fed information effect” (MPS ORTH). Table 7 reports the responses of the 5- and 10-year
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term premia and risk-neutral yields to the shocks. Although the monetary policy shock has

statistically significant effects on both components, the effects on risk-neutral yields are much

larger. Therefore, the regression results are consistent with the time series plots showing

that the secular declines in yields during FOMC announcement windows are primarily due

to reductions in short-rate expectations.

Table 7 about here.

4.4 Model-Implied Excess Bond Return Prediction

Section 3 established that ∇yt has significant predictive power for excess bond returns,

which is not spanned by linear combinations of yields. We replicate this result with our

shifting-endpoint term structure models. We simulate 5,000 artificial samples from each of

the following three models: the stationary Adrian et al. (2013) model (FE), the shifting-

endpoint model using ∇yt as the observed proxy for τt (OSE), and the shifting-endpoint

model using estimated τt (ESE). We estimate Equation (11) with and without τt as a pre-

dictor using the simulated data and report the means and the 2.5th and 97.5th percentiles of

the resulting R2.

Table 8 reports the R2 for predicting the excess bond returns of the 1-year holding period

from actual and simulated data. The top row reports the R2 for regressions using actual data

with and without ∇yt as a predictor in addition to the principal components of observed

yields, reproducing columns (1) and (6) of Table 3. Column (3) of Table 3 shows that

including ∇yt more than doubles the R2.

The remaining rows of Table 8 report the R2 produced by different models. For the F.E.

model, ∇yt provides essentially no gains in predictive power for the simulated excess bond

returns. This is natural because the yields generated by the F.E. model are spanned by the

principal components, and the model assumes no trend in the state variables.

For the OSE model, ∇yt provides substantial gains in predictive power. The mean

increase in R2 is 19 percentage points, and the actual increase in R2 (29 percentage points)

is contained in the 95% Monte Carlo interval. The ESE model produces similar results. The

gain in R2 implied by the ESE model is smaller than that implied by the OSE model, but the

95% Monte Carlo interval for the former also contains the actual data. The shifting-endpoint

models replicate the large predictive gains from adding τt in excess bond returns predictions,

and explicitly attributing τt to monetary policy appears to perform better than estimating

τt from observed yields.

In Table A4, we show that using∇yt as a proxy for τt in the OSE model also helps forecast

Treasury yields out-of-sample, and the performances at long horizons beat the random walk.
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Table 8 about here.

Why does the trend provide additional predictive power? We can obtain intuitions from

the analytical expression of excess returns in the shifting-endpoint term structure model.

Starting from the no-arbitrage condition 1 = Et

[
exp

{
mt+1 + rx

(n)
t+1 + y

(1)
t

}]
, one can show

that7

Et

[
rx

(n)
t+1

]
= const+ β(n)⊤(Λ0 + Λ11τt + Λ12Xt), (22)

where Λ11 and Λ12 are the first and the rest columns of Λ1. Appendix A shows the details

of the derivation. The terms in parentheses are proportional to the price of risk, Λt =

Ω− 1
2 (Λ0 + Λ1Zt), which determines the time-varying risk premia. The presence of τt in

parentheses implies that monetary policy can affect bond yields by changing the term premia,

which is confirmed by empirical studies (for example, Pflueger and Rinaldi (2022)). Since our

model imposes Λ11 = (IK−Φ)Γ for τt to be unspanned, the coefficient on τt in Equation (22)

is nonzero.

5 A Taylor-Rule Interpretation?

Monetary policy reacts to macroeconomic conditions. For example, the standard Taylor

rule stipulates that the policy interest rate is a linear combination of inflation and the

output gap, plus an unexpected “monetary policy shock”. In this case, if the monetary

policy shocks are absent or inconsequential, the monetary policy trend ∇yt is essentially a

linear combination of inflation and output trends. Our main argument about the driver of

the secular trend in Treasury yields is equivalent to the classical inflation- or output-driven

mechanisms for the interest rate trend. That is, the secular declines in interest rates over the

last three decades were ultimately driven by a decreasing inflation trend or a productivity

slowdown. To rule out this possibility, we proceed in two steps. First, we test whether a

linear combination of inflation and output trends has a predictive performance similar to

∇yt. Second, we estimate an OSE dynamic term structure model using inflation and real

output trends as proxies for τ t and compare the model-implied interest rate trends with

those implied by ∇yt.

7The derivations follow Adrian et al. (2013). One needs to assume β(n)⊤ = β
(n)⊤
t ≡

Covt

(
rx

(n)
t+1, Ut+1

)
Ω−1 and γ(n)⊤ = γ

(n)⊤
t ≡ Covt

(
rx

(n)
t+1, Vt+1

)
Ω−1

V , that is, the conditional covariances

are constant.
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5.1 Predicting Excess Bond Returns

We run the regression

rxt+1 = α + PC⊤
t β + τ⊤

t γ + εt+1, (23)

where τ t is a vector of the inflation trend and output factor. For the output factor, we

consider the 2-sided real output growth trend or the output gap estimated by Laubach and

Williams (2003). Table 9 reports regression results for the annual holding period8. Compared

with inflation and output trends, ∇yt provides the largest improvement in R2 and is highly

significant. The output factors are not significant for predicting excess bond returns. The

coefficient on output gap x∗
t is positive, though the Taylor rule stipulates that the policy

interest rate should respond positively to the output gap, and thus the coefficients on π∗
t and

x∗
t should be both negative. This suggests that the cointegration trend for the yield curve

is not merely the policy rate’s response to the persistent variations in inflation and output.

Therefore, ∇yt is not equivalent to a linear combination of inflation and output factors.

Monetary policy has unique roles in determining the secular trend in Treasury yields, which

is consistent with the similarity between the cumulative sums of unexpected monetary policy

shocks and ∇yt presented in Figure 4.

Table 9 about here.

5.2 Model-Implied Interest Rate Trends

We let (π∗
t , g

∗
t )

⊤ or (π∗
t , x

∗
t )

⊤ be the empirical proxies for the 2 × 1-dimensional trend

vector τ t, where π∗
t is the inflation trend, g∗t is the real output growth trend, and x∗

t is the

output gap. The latter two series are borrowed from the 2-sided estimates in Laubach and

Williams (2003). The state dynamics and SDF are the same as the baseline model, except

that the trend is a vector here. We estimate the dynamic term structure model using the

OSE method and study the model-implied trend for the 10-year yield. Due to the availability

of the macroeconomic series, the model is estimated at the quarterly frequency.

Figure 9 shows the estimated trend for the 10-year yield using the ESE model and the

OSE model with different proxies for τ t. As the monthly estimates in Figure 6, the ESE-

implied trend fits the observed series very well, and the OSE-implied trend proxied by ∇yt

is quite close to the ESE-implied trend. The trends proxied by macroeconomic variables fit

much worse. Both trends start lower than the observed 10-year yield by about 1 percentage

point and end higher by about 1 percentage point. Therefore, using inflation and output

8We find similar results for the quarterly holding period, which are reported in Table A3
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trends to proxy τ t, the model underestimates the secular decline in the 10-year yield by 2

percentage points.

In summary, although inflation and output trends capture substantial fractions of interest

rate trends, the explanatory power is outperformed by the cumulative effects of monetary

policy. Monetary policy uniquely determines the secular trend in interest rates, going above

and beyond reacting to macroeconomic factors.

Figure 9 about here.

6 Conclusion

This paper shows that monetary policy has persistent and profound impacts on the

Treasury yield curve. We provide new evidence that Treasury yields and the cumulative

effects of monetary policy are cointegrated and that monetary policy explains the persistent

variations in Treasury yields. Deviations in yields relative to the trend of monetary policy are

consequential in predicting future yields and excess bond premia, and observed yields do not

span this factor. We build a dynamic term structure with a stochastic trend to explain the

empirical facts. The model implies that monetary policy mainly affected expected short-term

interest rates before the 2008 financial crisis and significantly reduced term premia during the

zero-lower-bound episode. Ignoring the stochastic trend, as standard affine term structure

models do, would significantly underestimate the effects of monetary policy on expected

interest rates. To this end, our model provides stronger support for the implications of

standard new Keynesian models relative to existing models of interest rates. Our analysis

of the effects of monetary policy on term premia during the ZLB episode is also consistent

with the views of intermediary asset pricing models.

Nonlinear new Keynesian asset pricing models typically imply that monetary policy

shocks significantly affect term premia. For example, Pflueger and Rinaldi (2022) find that

the effects of monetary policy shocks on term premia and risk-neutral yields have similar

magnitudes, with the former even larger than the latter. These implications are in stark con-

trast to the empirical findings in this paper. One possible reason is that the new Keynesian

models are stationary, and thus, the long-maturity risk-neutral yields must have minimal

variations. It is interesting to incorporate persistent stochastic trends in new Keynesian

asset pricing models and reconcile the difference from affine term structure models, which

we leave for future research.
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Figure 1: FOMC announcement dates and Treasury yields.
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Notes: Comparing observed yields with their cumulative changes in or out of FOMC windows. Each FOMC
window ranges from the day before to the day after an FOMC announcement date.
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Figure 2: Cumulative yield changes during FOMC announcement windows.
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Notes: The top panel collects cumulative yield changes during FOMC announcement windows for different
maturities. The procedures for constructing the series are described by Equation (1). The bottom panel
plots the observed yields.

29



Figure 3: FOMC announcement dates and Treasury yields: principal components.
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Notes: The first three principal components of the nominal Treasury yield curve and yield changes during
or outside the FOMC window. The weighting matrix is normalized such that each principal component’s
weights on all yields sum to 1. The percentages of total variations explained by the first three principal
components are 94.26, 5.34, and 0.24 for the unfiltered yield curve; 96.96, 2.93, and 0.08 for the cumulative
changes during the FOMC window; 62.30, 31.90, and 4.18 for the cumulative changes outside the FOMC
window.
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Figure 4: Cumulative yield changes and monetary policy shocks.
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Figure 5: Treasury yields and trends: with yield-specific trends.
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Notes: Each yield y
(n)
t is decomposed as y

(n)
t = λ(n)ȳt + ȳ

(n)
t + ỹ

(n)
t , where λ(n) is a yield-specific loading on

the common trend, ȳt = ȳt−1 + ηt is a stochastic trend common to all yields, ȳ
(n)
t = ȳ

(n)
t + η

(n)
t is a yield-

specific stochastic trend, and ỹ
(n)
t is an element of a stationary VAR component. We include n = 0.25, 5 and

10 years in the exercise. We also include ∇yt, the first principal component of the FOMC-filtered yields,

and decompose it as ∇yt = ȳt + ỹFOMC
t . Note that y

(n)
t and ∇yt share the same stochastic trend ȳt, but

∇yt has a unitary loading on ȳt. Median estimates of λ(n) are presented in the titles, and the plots show the
median estimates of the trends together with the 95% confidence band of the overall trend for each yield.
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Figure 6: Observed 10-year yield and its trend component implied by different models.

1995 2000 2005 2010 2015

2

4

6

8

1995 2000 2005 2010 2015

2

4

6

8

1995 2000 2005 2010 2015

2

4

6

8

1995 2000 2005 2010 2015

2

4

6

8

1995 2000 2005 2010 2015

2

4

6

8

1995 2000 2005 2010 2015

2

4

6

8

Notes: This figure compares the trends for the ten-year Treasury yield estimated from different measures
of monetary policy shocks. The trend component is estimated using either the OSE or the ESE approach,

defined as y
(10)∗
t = A10+B⊤

10(µ+Γτt) using the model parameters A,B and proxy/estimate of τt. The solid
curve is the observed 10-year Treasury yield. The red dashed curve is estimated from the OSE model using
different monetary policy trends to proxy τt. The blue dashed line is estimated from the ESE model. The
shaded areas are the 68% and 99% confidence intervals.
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Figure 7: Loadings of yields on the cumulative effects of monetary policy announcements.
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t = α + β∇yt + ut for each maturity, estimated using the dynamic

OLS regression method in Stock and Watson (1993). Model: the solid line is B⊤
n Γ. The dashed lines are the

90% confidence intervals (data) or Monte Carlo intervals (model) for regression coefficients in samples with
the same length as the data simulated from an OSE model.
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Figure 8: Filtering the yield curve components.
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Figure 9: Trends for the 10-year yield: macro vs. monetary policy
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Note: This figure compares the trends for the ten-year Treasury yield estimated from macroeconomic trends

or ∇yt. The solid curve is the observed 10-year Treasury yield. The trend is y
(10)∗
t = A10 + B⊤

10(µ + Γτ t)
using the model parameters A,B and the empirical proxy for τ t. The red dashed curve is estimated using
∇yt to proxy τt in the OSE model. The dotted curves are estimated using inflation and output growth
trend (g∗t ) or output gap (x∗

t ) as proxies for τ t in the OSE model. The macroeconomic trend variables are
the 2-sided estimates from Laubach and Williams (2003). The blue dashed line is estimated from the ESE
model. The shaded areas are the 68% and 99% confidence intervals.
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Table 1: Summary statistics of Eurodollar futures shocks.

count mean sd min max
ED1 254 -0.01 0.06 -0.55 0.18
ED2 254 -0.01 0.06 -0.48 0.15
ED3 254 -0.01 0.06 -0.31 0.18
ED4 254 -0.01 0.06 -0.27 0.24
1-year yield 254 -0.03 0.11 -0.61 0.26
10-year yield 254 -0.02 0.13 -0.45 0.72

Notes: ED1-ED4 denote 30-min Eurodollar fu-
tures shocks. “1-year yield” and “10-year yield”
are changes in the respective yield from the day
before the FOMC announcement date to the
day after. All variables are summed within each
month.
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Table 3: Predicting excess bond returns.

(1) (2) (3) (4) (5) (6) (7)
Panel A: Full sample, 1989-2018

PC1 0.46 1.38 4.20 6.47 5.76 6.86 7.33
(0.27) (0.45) (0.95) (1.30) (1.11) (1.16) (1.21)

PC2 1.10 1.38 1.61 1.92 1.91 1.68 1.82
(0.33) (0.24) (0.20) (0.17) (0.18) (0.20) (0.18)

PC3 -2.28 -1.78 0.58 3.53 2.63 1.11 1.98
(2.13) (2.15) (2.18) (2.69) (2.25) (2.07) (2.27)

π∗
t -4.20 -7.61 -11.19

(1.84) (2.09) (2.30)
[0.28] [0.10] [0.04]

r∗t -5.06 -14.00
(1.64) (3.84)
[0.12] [0.15]

i∗t -11.19 -3.27
(2.42) (2.38)
[0.05] [0.41]

∇yt -9.17 -7.63
(1.63) (1.96)
[0.02] [0.03]

R2 0.23 0.28 0.38 0.44 0.43 0.52 0.53
Memo: r∗ filtered real-time real-time real-time

Panel B: Subsample, 1994-2018
PC1 0.86 1.18 4.10 5.69 5.64 6.24 7.45

(0.31) (0.46) (0.71) (1.09) (1.02) (0.77) (0.94)
PC2 1.33 1.43 1.68 1.92 1.93 1.64 1.86

(0.33) (0.30) (0.23) (0.22) (0.21) (0.21) (0.18)
PC3 -1.84 -2.08 -0.29 2.43 2.22 0.41 1.90

(2.31) (2.28) (2.15) (2.72) (2.31) (1.99) (2.27)
π∗
t -3.32 -10.40 -10.99

(3.01) (2.91) (2.97)
[0.60] [0.12] [0.14]

r∗t -4.83 -12.04
(1.24) (3.34)
[0.07] [0.26]

i∗t -11.66 -5.59
(2.47) (2.79)
[0.09] [0.30]

∇yt -8.66 -6.91
(1.21) (1.52)
[0.01] [0.03]

R2 0.30 0.31 0.41 0.46 0.45 0.54 0.56
Memo: r∗ filtered real-time real-time real-time

Notes: Predictive regressions for annual average excess bond returns rxt+1 ≡
1
14

∑15
n=2 rx

(n)
t+1. The independent variables are the first three principal compo-

nents of yields (PC1, PC2, PC3), estimates of the inflation trend π∗
t , the real-rate

trend r∗t , and the long-run nominal short rate i∗t , and the first principal com-
ponent of cumulative changes in yields during the FOMC window ∇yt. The
numbers in parentheses are Newey-West standard errors and in square brackets
are small-sample p values à la Bauer and Hamilton (2018).
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Table 4: Predicting excess bond returns: no principal components.

(1) (2) (3) (4) (5) (6)
Panel A: Full sample, 1989-2018

π∗
t 0.73 0.80 0.61

(1.48) (1.73) (1.75)
r∗t -0.08 0.27

(1.05) (1.66)
i∗t 0.44

(0.81)
∇yt 0.10

(0.58)
R2 0.00 0.00 0.01 0.00 0.00
Memo: r∗ filtered real-time real-time

Panel B: Subsample, 1994-2018
π∗
t 3.52 3.66 3.60

(2.50) (2.76) (2.95)
r∗t -0.15 -0.10

(1.05) (1.71)
i∗t 0.80

(1.09)
∇yt 0.15

(0.78)
R2 0.02 0.03 0.02 0.01 0.00
Memo: r∗ filtered real-time real-time

Notes: Predictive regressions for annual average excess bond
returns rxt+1 ≡ 1

14

∑15
n=2 rx

(n)
t+1. The independent variables are

the estimates of the inflation trend π∗
t , the real-rate trend r∗t ,

and the long-run nominal short rate i∗t , and the first principal
component of cumulative changes in yields during the FOMC
window ∇yt. Numbers in parentheses are Newey-West stan-
dard errors.
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Table 5: Predicting bond excess Returns: detrended yields.

(1) (2) (3) (4) (5) (6) (7)
Panel A: Full sample, 1989-2018

PC1 0.58 0.31 1.39 1.22 0.47 2.25 2.08
(0.34) (0.53) (0.67) (0.79) (0.80) (0.55) (0.72)

PC2 1.34 1.37 1.37 1.50 1.84 1.76 0.17
(0.33) (0.29) (0.33) (0.34) (0.23) (0.21) (0.28)

PC3 -1.85 -2.22 -0.80 0.88 2.69 0.53 5.34
(2.27) (2.27) (2.40) (3.00) (2.44) (1.92) (0.65)

R2 0.30 0.29 0.33 0.36 0.45 0.54 0.49
Trend π∗

t r∗t r∗t i∗t ∇yt
Memo: r∗ filtered real-time real-time

Panel B: Subsample, 1994-2018
PC1 0.46 0.57 1.32 1.06 0.62 1.84 2.33

(0.27) (0.51) (0.56) (0.63) (0.81) (0.81) (0.74)
PC2 1.10 1.39 1.10 1.12 1.83 1.79 0.04

(0.33) (0.24) (0.33) (0.34) (0.21) (0.18) (0.26)
PC3 -2.28 -1.83 -1.53 -1.38 2.77 1.22 6.12

(2.13) (2.15) (2.36) (2.72) (2.13) (1.96) (0.77)
R2 0.23 0.28 0.25 0.24 0.42 0.52 0.53
Trend π∗

t r∗t r∗t i∗t ∇yt
Memo: r∗ filtered real-time real-time

Notes: Predictive regressions for annual average excess bond returns
rxt+1 ≡ 1

14

∑15
n=2 rx

(n)
t+1. In specification (1), the independent variables

are the first three principal components of observed 1- to 15-year yields.
In specifications (2)-(6), the independent variables are the first three prin-
cipal components of the residuals in the regressions for yields on the re-
spective trend variables indicated in the last row. In specification (7), the
independent variables are the first three principal components of changes
in the 1- to 15-year yields outside the FOMC windows. π∗

t is the trend
inflation, i∗t is the long-run nominal short rate in Bauer and Rudebusch
(2020), and ∇yt is the first principal component of the cumulative daily
changes in the cross-section of Treasury zero coupon yields during FOMC
announcement windows. Newey-West standard errors with six lags are in
the parentheses.
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Table 6: Predicting excess bond returns: orthogonalized trends.

(1) (2) (3) (4) (5)
Panel A: Full sample, 1989-2018

π∗
t -3.46 -6.06 -9.13

(2.77) (2.78) (2.72)
r∗t -4.32 -11.46

(2.08) (4.24)
i∗t -9.29

(2.77)
∇yt -8.95

(2.01)
R2 0.02 0.07 0.10 0.09 0.20
Memo: r∗ filtered real-time real-time

Panel B: Subsample, 1994-2018
π∗
t -1.09 -6.53 -7.12

(4.47) (5.23) (3.78)
r∗t -3.64 -9.85

(1.92) (4.06)
i∗t -8.94

(3.04)
∇yt -8.45

(1.98)
R2 0.00 0.04 0.07 0.06 0.16
Memo: r∗ filtered real-time real-time

Notes: Predictive regressions for annual average excess
bond returns rxt+1 ≡ 1

14

∑15
n=2 rx

(n)
t+1. The independent

variables are OLS residuals in the regressions for the trend
variables on the observed 1- to 15-year yields. Numbers
in parentheses are Newey-West standard errors.
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Table 7: Contemporaneous responses of risk-neutral yields and term premia to monetary
policy shocks.

Daily Change Window Change

TP5 RNY5 TP10 RNY10 TP5 RNY5 TP10 RNY10

MPS ORTH 0.039∗∗∗ 0.481∗∗∗ 0.075∗∗ 0.559∗∗∗ 0.077∗∗∗ 0.570∗∗∗ 0.149∗∗∗ 0.577∗∗∗

(0.015) (0.090) (0.031) (0.093) (0.018) (0.102) (0.040) (0.097)

Observations 281 281 281 281 281 281 281 281
R2 0.041 0.188 0.032 0.239 0.089 0.150 0.071 0.158
Adjusted R2 0.037 0.185 0.029 0.236 0.085 0.147 0.067 0.155

MPS 0.038∗∗∗ 0.508∗∗∗ 0.067∗∗ 0.563∗∗∗ 0.076∗∗∗ 0.640∗∗∗ 0.140∗∗∗ 0.619∗∗∗

(0.012) (0.082) (0.026) (0.087) (0.017) (0.093) (0.037) (0.104)

Observations 281 281 281 281 281 281 281 281
R2 0.046 0.257 0.031 0.298 0.106 0.233 0.076 0.223
Adjusted R2 0.043 0.254 0.028 0.295 0.102 0.230 0.073 0.221

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The term premia and risk-neutral yields are computed from the OSE: ∇yt model. The regression is

∆FOMCy
(n),·
t = β0+β1HFSt+ εt. The dependent variable ∆

FOMCy
(n),·
t is the daily changes in the n-year

term premium or term premium on the FOMC announcement dates or the t − 1-to-t + 1 changes around
FOMC announcement dates. TP5 and RNY5 denote the 5-year term premium and risk-neutral yields,
and those for the 10-year yield are denoted analogously. The high-frequency shock HFSs is the 30-minute
change in the policy rate futures rate bracketing the FOMC announcement time. The shock MPS is the
first principal component of the changes in ED1-ED4, scaled so that the impact on ED4 is unity. The shock
MPS ORTH is the orthogonalized MPS computed by Bauer and Swanson (2022b).
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Table 8: Model-implied predictive R2 of excess bond returns.

(1) (2) (3)
R2 PCs only R2 with ∇yt (2)-(1)

Data 0.23 0.52 0.29
FE model 0.31 0.35 0.05

[0.18, 0.46] [0.23, 0.51] [0.00, 0.19]
OSE model 0.42 0.62 0.19

[0.25, 0.60] [0.47, 0.74] [0.07, 0.34]
ESE model 0.41 0.55 0.14

[0.22, 0.61] [0.37, 0.72] [0.03, 0.29]

Notes: The R2 of predictive regressions for annual
excess bond returns, averaged across maturities of 2
to 15 years. The R2 in the data corresponds to the
full-sample estimates in the main text. The model-
implied R2 are based on 5,000 simulations of artificial
data of the same size as the full sample. For each
model, the first row reports the means and the second
row reports the 95 percent Monte Carlo confidence
intervals of the R2 of predictive regressions estimated
in the simulated data.
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Table 9: Predicting annual excess bond returns: inflation and output trends.

(1) (2) (3) (4) (5)
Panel A: Full sample, 1989-2020

PC1 0.84 6.23 7.51 7.65 12.33
(0.55) (1.55) (1.72) (1.58) (2.02)

PC2 -0.01 -0.01 -0.01 -0.02 -0.01
(0.00) (0.00) (0.00) (0.00) (0.00)

PC3 -3.53 -2.82 -2.56 -2.27 -1.77
(1.49) (1.35) (1.30) (1.13) (1.30)

π∗
t -14.10 -13.62 -10.07

(3.71) (3.46) (3.75)
[0.12] [0.10] [0.30]

g∗t -5.62
(3.40)
[0.54]

x∗
t 3.96

(1.13)
[0.12]

∇yt -14.67
(2.46)
[0.01]

R2 0.19 0.35 0.38 0.43 0.46
Memo: output trend trend growth output gap

Panel B: Subsample, 1994-2020
PC1 1.70 6.28 6.73 6.94 11.86

(0.66) (1.70) (1.73) (1.55) (1.94)
PC2 -0.01 -0.01 -0.01 -0.02 -0.01

(0.00) (0.00) (0.00) (0.00) (0.00)
PC3 -2.77 -2.28 -2.16 -1.51 -1.35

(1.55) (1.37) (1.34) (1.12) (1.42)
π∗
t -16.14 -13.01 -7.14

(5.44) (6.53) (5.01)
[0.33] [0.47] [0.73]

g∗t -4.35
(4.52)
[0.77]

x∗
t 4.51

(1.15)
[0.05]

∇yt -14.33
(2.63)
[0.04]

R2 0.21 0.31 0.33 0.40 0.44
Memo: output trend trend growth output gap

Notes: Predictive regressions for annual average excess bond returns rxt+1 ≡
1
14

∑15
n=2 rx

(n)
t+1. The independent variables are the first three principal com-

ponents of yields (PC1, PC2, PC3), estimates of the inflation trend π∗
t , the

real output growth trend g∗t , the output gap xt, and the first principal com-
ponent of cumulative changes in yields during the FOMC window ∇yt. The
numbers in parentheses are Newey-West standard errors, and those in square
brackets are small-sample p values à la Bauer and Hamilton (2018).
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A Model

The model is proposed by Bauer and Rudebusch (2020). We propose a new estimation

method that avoids numerical optimization and speeds up the estimation. The estimation

method allows for vector-valued trends for the state vector, and the scalar-τt model is a

special case.

A.1 Model Setup

The state is a KX × 1 vector Xt, which evolves as

Xt =µ+ Γτ t + X̃t,

τ t =τ t−1 + ηt, ηt ∼ N (0,Ωη)

X̃t =ΦX̃t−1 + Ũt, Ũt ∼ N (0, Ω̃), (A1)

where τ t is a Kτ × 1 random walk and X̃t is a KX × 1 stationary VAR(1). The shocks are

i.i.d over time and ηt ⊥ Ũt. Define

Zt ≡

[
τ t

Xt

]
, Ut ≡ Γηt + Ũt,Ω ≡ E[UtU

⊤
t ] = ΓΩηΓ

⊤ + Ω̃.

The log stochastic discount factor mt+1 evolves as

mt+1 = −δ0 − δ⊤
1 Xt −

1

2
Λ⊤

t Λt − Λ⊤
t Ω

− 1
2Ut+1. (A2)

The price of risk is an affine function of Zt:

Λt = Ω− 1
2 (Λ0 + Λ1Zt). (A3)

Note that the SDF is driven by a KX × 1 dimensional shock with the same dimension as Xt,

but is a combination of shocks to τ t and X̃t. Although the trend τt does not directly affect

the observed yields, it affects risk premia by affecting the price of risk. We assume that Λ1

satisfies

Λ1 =
[
(IKX

− Φ)Γ,Λ12

]
, (A4)

i.e., the first Kτ column of Λ1 (the loading on τ t) equals (IKX
− Φ)Γ and the remaining K

columns is an unrestricted KX ×K matrix Λ12. It can be shown that the log zero-coupon

bond prices are affine in Xt:

p
(n)
t = An + B⊤

nXt, (A5)
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where An and Bn satisfy the usual no-arbitrage recursions.

A.2 No-Arbitrage Recursions

First, we show that the state vector Zt evolves as

Zt = µZ + ΦZZt−1 + Vt, Vt ≡

[
ηt

Ut

]
, (A6)

with

µZ =

[
0

(IKX
− Φ)µ

]
, ΦZ =

[
IKτ 0Kτ×KX

(IKX
− Φ)Γ Φ

]
, ΩV ≡ E[VtV

⊤
t ] =

[
Ωη ΩηΓ

⊤

ΓΩη Ω

]
.

We rewrite Zt as

Zt =

[
0

µ

]
+

[
IKτ 0Kτ×KX

Γ Φ

][
τ t−1

X̃t−1

]
+

[
ηt

Γηt + Ũt.

]

Note that [
τ t−1

X̃t−1

]
=

[
1 0Kτ×KX

−Γ IKX

][
τ t−1

Xt−1

]
−

[
0

µ

]
.

Substituting for τ t−1 and X̃t−1, we get µZ , ϕZ and Vt. Since Vt ⊥ Ũt, the expression for ΩV

follows naturally.

Next, we show that restriction (A4) implies the bond pricing equation (A5). We prove

by guess-and-verify. The no-arbitrage recursion is

p
(n)
t = Et[mt+1] + Et[p

(n−1)
t+1 ] +

1

2
Vart(mt+1) +

1

2
Vart(p

(n−1)
t+1 ) +Covt(mt+1, p

(n−1)
t+1 ). (A7)

Note that Et[·] refers E[·|Zt], and

Et[Xt+1] =µ+ Γτ t + ΦX̃t = µ+ Γτ t + Φ(Xt − µ− Γτ t)

=(IKX
− Φ)(µ+ Γτ t) + ΦXt.

When p
(n)
t = An + B⊤

nXt,

Et[mt+1] +
1

2
Vart(mt+1) = −δ0 − δ⊤

1 Xt,

Et[p
(n−1)
t+1 ] = An−1 + B⊤

n−1[(IKX
− Φ)(µ+ Γτ t) + ΦXt],
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Vart(p
(n−1)
t+1 ) = B⊤

n−1ΩBn−1,

Covt(mt+1, p
(n−1)
t+1 ) = −B⊤

n−1(Λ0 + Λ1Zt).

Note that Λ1Zt = Λ11τ t + Λ12Xt, and we hope to eliminate τ t from the right-hand side of

the recursion. Collecting the terms involving τ t, we should have

B⊤
n−1[(IKX

− Φ)Γ− Λ11] = 0, ∀n.

So Λ11 = (IKX
− Φ)Γ eliminates τ t from the right-hand side of Equation (A7).

Finally, we derive the bond pricing recursions. Equation (A7) together with Equa-

tion (A4) implies

p
(n)
t =− δ0 − δ⊤

1 Xt +An−1 + B⊤
n−1[(IKX

− Φ)µ+ ΦXt] (A8)

+
1

2
B⊤
n−1ΩBn−1 − B⊤

n−1(Λ0 + Λ12Xt). (A9)

So,

An =An−1 − δ0 + B⊤
n−1(IKX

− Φ)µ+
1

2
B⊤
n−1ΩBn−1 − B⊤

n−1Λ0, (A10)

B⊤
n =− δ⊤

1 + B⊤
n−1(Φ− Λ12). (A11)

The yields are

y
(n)
t = An +B⊤

t Xt, (A12)

with An = − 1
n
An and Bn = − 1

n
Bn.

B Estimation

[To be written]

C Additional Results

C.1 Cointegration Test for the Average Yield

We estimate cointegration relationships between the first principal component of 3-month,

6-month, and 1-year through 15-year Treasury yields. Details are described in Section 2,

and the regressions are the same as those in Table 2. The sample period is 1990Q1-2018Q1.

The results are qualitatively similar to those reported in Table 2 for the 10-year yield.
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Quantitatively, the cointegration residuals are more persistent than those for the 10-year

yield. The only residuals that significantly reject the unit root hypothesis regarding ADF

and PP tests are the demeaned average9 cumulative changes in yields outside FOMC windows

and residuals obtained by regressing on ∇yt.

Table A1 about here.

C.2 Predicting Excess Bond Returns

In the paper, we study excess bond returns over the holding period of one year. In

Table A2, we report the predictive regression results analogous to those reported in Table 3,

but over the holding period of one quarter. The regression R2s for the quarterly holding

period are smaller than those for the annual holding period. However, we focus on (i)

the improvement in R2 by including trend variables, and (ii) the significance of the trend

variables. For the quarterly holding period, we also find that (i) ∇yt leads to the largest

improvement in R2, and (ii) ∇yt is highly significant. The results are consistent with those

reported in Table 3.

Table A2 about here.

Monetary policy reacts to macroeconomic conditions. For example, the standard Taylor

rule stipulates that the policy interest rate is a linear combination of inflation and the

output gap, plus an unexpected “monetary policy shock”. Therefore, the monetary policy

trend ∇yt may be equivalent to a linear combination of the inflation and output growth/gap

trends. In this case, our main argument that the secular trend in Treasury yields is driven

by the monetary policy trend is equivalent to the classical inflation-driven or output-driven

mechanisms for the interest rate trend. To rule out this possibility, we test whether a linear

combination of the inflation and output trends has a similar predictive performance as ∇yt.

We run the regression

rxt+1 = α + PC⊤
t β + τ⊤

t γ + εt+1, (A13)

where τ t is a vector of the inflation trend and output factor. For the output factor, we

consider the real output growth trend or the output gap estimated by Laubach and Williams

(2003). Table A3 and Table 9 report regression results for the quarterly and annual holding

periods. In both tables, ∇yt provides the largest improvement in R2 and is highly significant.

The output factors are not significant for predicting excess bond returns. Therefore, ∇yt is

not equivalent to a linear combination of inflation and output factors. Monetary policy has

9Precisely, the first principal component of changes in all yields outside FOMC windows.
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unique roles in determining the secular trend in Treasury yields, which is consistent with the

similarity between the cumulative sums of (unexpected) monetary policy shocks and ∇yt

presented in Figure 4.

Table A3 about here.

Table 9 about here.

C.3 Using i∗t as a Proxy for τ t

Another proxy for τ t is the long-run nominal interest rate i∗t in Bauer and Rudebusch

(2020), which equals the sum of trend inflation and natural real interest rate. We compare

the model-implied y
(10)∗
t using i∗t or ∇yt as a proxy for τ t in the OSE model. Since it∗ is

quarterly, we also estimate the OSE: ∇yt model at the quarterly frequency using end-of-

quarter observations. Figure A1 presents the observed quarterly 10-year yield series along

with its estimated trends. The trend series estimated by the ESE and i∗t replicate Figure 5

of Bauer and Rudebusch (2020), and the y
(10)∗
t estimated from ∇yt is also presented. The

three estimates of y
(10)∗
t are very similar, confirming that the cumulative effects of monetary

policy are essential for explaining the long-term trend of Treasury yields.

Figure A1 about here.

C.4 Yield Curve Decomposition: Shifting vs. Fixed Endpoints

How important is the shifting endpoint for understanding the effects of monetary policy

on risk-neutral yields and term premia? We estimate risk-neutral yields and term premia

components using the OSE: ∇yt and the FE model and filter out their cumulative changes

during or outside the FOMC windows. Figure A2 presents the filtered series for the two

models. The thick solid curves are produced by the OSE model and the thin dotted curves

are produced by the FE model. Since the FE model does not have a downward trend in

the state variables, expected future short-term yields must revert to the unconditional mean

as the horizon increases. Therefore, the risk-neutral yields implied by the FE model fail to

incorporate the secular decline in the short-term interest rate. This is also reflected in the

cumulative changes during the FOMC windows, especially for long maturities. For example,

the OSE model suggests that the risk-neutral 10-year yield has declined by 5.2 percentage

points during the FOMC windows since 1990, while the FE model suggests that it has

declined by 3.6 percentage points. The FE model underestimates the effects of monetary

policy on risk-neutral 10-year yields by 31%. Since the risk-neutral yield and term premium
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add up to the observed yield, the FE model overestimates the effects of monetary policy on

term premia. The OSE model suggests that the 10-year term premium has declined by 2.5

percentage points during FOMC windows, and the FE model suggests that it has declined

by 3.7 percentage points. Note that the FE model finds roughly equal effects of monetary

policy on risk-neutral yields and term premia, which is also documented by Pflueger and

Rinaldi (2022), who decompose the yields using a stationary DSGE model.

Figure A2 about here.

C.5 Out-of-Sample Forecasts

We use the OSE models to forecast out-of-sample Treasury yields and compare the per-

formance with a random walk model. The random walk model has proven to be very hard

to beat due to the extreme persistence of interest rates. Our results suggest that using ∇yt

as a proxy for τ t in a shifting-endpoint dynamic term structure model helps to achieve more

accurate forecasts.

We compare the out-of-sample forecast performances of two proxies for τ t: ∇yt and the

cumulative sums of daily changes in the federal funds target rate on FOMC announcement

dates. The benchmark is a random walk with no drift, which uses the current value to

forecast future values. The models are recursively estimated using monthly data, starting in

January 1998 when five years of data are available10. We focus on forecasts of the 10-year

yield at horizons of 1, 3, 12, 24, and 36 months. The root mean squared errors in annual

percentage points are reported in Table A4. The table also reports p-values for the null

hypothesis that two forecast models are equally accurate against the one-sided alternative

that the left model is more accurate than the right model. The p-values are obtained by

comparing the Diebold and Mariano (1995) statistic with standard normal critical values.

We find that the OSE: ∇yt is more accurate than the diftless random walk model at long

forecast horizons, while the OSE: FF target model is outperformed by a random walk at all

horizons.

Table A4 about here.

C.6 Monetary Policy Shocks and Yield Curve Decomposition

In the main text, we analyzed the effects of monetary policy shocks on risk-neutral yields

and term premia. The monetary policy shocks in the main text are the first principal

component of high-frequency ED1-ED4 shocks and its orthogonalized residual relative to

10Our sample starts from January 1994, when the federal funds target rate becomes available.
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a set of macroeconomic news. Here, we present the effects of ED1-ED4 shocks on risk-

neutral yields and term premia. We regress the three-day changes in the risk-neutral yields

or term premia around FOMC announcements on each of the high-frequency futures shocks.

Table A5 reports the estimation results. The results are consistent across all specifications:

risk-neutral yields respond much more strongly to monetary policy shocks than term premia.

Table A5 about here.
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Figure A1: Observed 10-year yield and its model-implied trend.

1990 1995 2000 2005 2010 2015

0
2

4
6

8
10

P
er

ce
nt

Ten−year yield
ESE
∇yt

it
 ∗ 

Notes: This figure estimates the trend component of the 10-year yield using either the OSE or the ESE

approach. The solid curve is the observed 10-year Treasury yield. The trend is y
(10)∗
t = A10 +B10(µ+ Γτt)

using the model parameters A,B and the empirical proxy for τt. The red dashed curve is estimated from the
OSE model using ∇yt to proxy τt. The blue dashed curve is estimated from OSE model using the Bauer and
Rudebusch (2020) trend nominal interest rate i∗t to proxy τt. The dotted line is estimated from the Bauer
and Rudebusch (2020) ESE model. The shaded area is the 95% Monte Carlo interval computed by Bauer
and Rudebusch (2020).
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Figure A2: Comparing yield curve decompositions based on the FE and OSE models.
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Table A2: Predicting quarterly excess bond returns.

(1) (2) (3) (4) (5) (6) (7)
Panel A: Full sample, 1989-2018

PC1 0.21 0.51 1.37 2.38 2.12 2.49 2.67
(0.12) (0.20) (0.34) (0.58) (0.51) (0.47) (0.52)

PC2 0.31 0.40 0.47 0.61 0.60 0.52 0.58
(0.12) (0.11) (0.10) (0.13) (0.13) (0.12) (0.13)

PC3 -1.42 -1.30 -0.56 0.75 0.38 -0.15 0.18
(0.89) (0.89) (1.01) (1.20) (1.03) (1.03) (1.03)

π∗
t -1.43 -2.48 -4.02

(0.63) (0.68) (0.96)
[0.19] [0.04] [0.02]

r∗t -1.53 -5.06
(0.61) (1.59)
[0.11] [0.10]

i∗t -4.03 -1.25
(0.99) (1.17)
[0.02] [0.45]

∇yt -3.27 -2.68
(0.63) (0.80)
[0.00] [0.02]

R2 0.07 0.09 0.12 0.15 0.15 0.18 0.18
Memo: r∗ filtered real-time real-time real-time

Panel B: Subsample, 1994-2018
PC1 0.31 0.50 1.58 2.26 2.28 2.53 3.00

(0.16) (0.25) (0.50) (0.66) (0.66) (0.53) (0.70)
PC2 0.33 0.39 0.49 0.60 0.59 0.48 0.57

(0.15) (0.13) (0.11) (0.16) (0.16) (0.16) (0.17)
PC3 -1.21 -1.36 -0.66 0.50 0.56 -0.14 0.46

(0.94) (0.92) (0.97) (1.24) (1.13) (1.04) (1.16)
π∗
t -1.94 -4.54 -4.92

(1.81) (2.21) (2.22)
[0.52] [0.25] [0.25]

r∗t -1.77 -4.63
(0.70) (1.65)
[0.12] [0.25]

i∗t -4.73 -2.18
(1.55) (1.49)
[0.16] [0.34]

∇yt -3.53 -2.83
(0.87) (0.85)
[0.03] [0.03]

R2 0.07 0.08 0.12 0.14 0.14 0.18 0.19
Memo: r∗ filtered real-time real-time real-time

Notes: Predictive regressions for quarterly average excess bond returns rxt+1 ≡
1
14

∑15
n=2 rx

(n)
t+1. The independent variables are the first three principal compo-

nents of yields (PC1, PC2, PC3), estimates of the inflation trend π∗
t , the real-rate

trend r∗t , and the long-run nominal short rate i∗t , and the first principal com-
ponent of cumulative changes in yields during the FOMC window ∇yt. The
numbers in parentheses are Newey-West standard errors and in square brackets
are small-sample p values obtained with the bootstrap method of Bauer and
Hamilton (2018).
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Table A3: Predicting quarterly excess bond returns: inflation and output trends.

(1) (2) (3) (4) (5)
Panel A: Full sample, 1989-2020

PC1 0.25 2.00 2.40 2.61 5.09
(0.24) (0.76) (0.90) (0.79) (1.10)

PC2 -0.00 -0.00 -0.00 -0.01 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

PC3 -1.11 -0.87 -0.78 -0.63 -0.39
(0.53) (0.57) (0.58) (0.63) (0.61)

π∗
t -4.69 -4.50 -2.99

(1.68) (1.67) (1.69)
[0.15] [0.14] [0.39]

g∗t -1.84
(1.56)
[0.58]

x∗
t 1.68

(0.71)
[0.19]

∇yt -6.14
(1.30)
[0.01]

R2 0.04 0.09 0.10 0.12 0.17
Memo: output trend trend growth output gap

Panel B: Subsample, 1994-2020
PC1 0.45 2.31 2.42 2.60 5.17

(0.33) (0.95) (1.02) (0.88) (1.18)
PC2 -0.00 -0.00 -0.00 -0.01 -0.00

(0.00) (0.00) (0.00) (0.00) (0.00)
PC3 -0.91 -0.70 -0.67 -0.41 -0.30

(0.58) (0.56) (0.57) (0.64) (0.64)
π∗
t -6.72 -5.93 -3.34

(2.92) (3.14) (3.23)
[0.33] [0.36] [0.75]

g∗t -1.09
(2.06)
[0.84]

x∗
t 1.73

(0.78)
[0.15]

∇yt -6.53
(1.58)
[0.03]

R2 0.03 0.08 0.08 0.11 0.16
Memo: output trend trend growth output gap

Notes: Predictive regressions for quarterly average excess bond returns

rxt+1 ≡ 1
14

∑15
n=2 rx

(n)
t+1. The independent variables are the first three prin-

cipal components of yields (PC1, PC2, PC3), estimates of the inflation trend
π∗
t , the real output growth trend g∗t , the output gap xt, and the first prin-

cipal component of cumulative changes in yields during the FOMC window
∇yt. The numbers in parentheses are Newey-West standard errors, and
those in square brackets are small-sample p values obtained with the boot-
strap method of Bauer and Hamilton (2018).
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Table A4: Out-of-sample forecasts of the 10-year yield.

1-mo 3-mo 12-mo 24-mo 36-mo
OSE: ∇yt 0.28 0.44 0.62 0.73 0.97
OSE: FF target 0.29 0.49 0.89 1.23 1.45
Random walk 0.26 0.43 0.77 1.02 1.20
p-value: ∇yt ≻ FFR 0.01 0.03 0.02 0.02 0.04
p-value: ∇yt ≻ Random walk 0.98 0.74 0.01 0.02 0.03
p-value: FFR ≻ Random walk 1.00 0.99 0.92 0.95 0.93

Notes: The table reports root mean squared forecast errors of the
10-year yield in annual percentage points. The first row forecasts the
yields with the OSE method, using∇yt as the proxy for τt. The second
row uses the FOMC-window changes in the federal funds target rate
as the proxy for τt. The third row forecasts the yields using a driftless
random walk, i.e., the current value of the yields. The p-values are for
testing the null hypothesis that the two forecast models are equally
accurate against the one-sided alternative that the left model is more
accurate than the right model. The test compares the Diebold and
Mariano (1995) statistic with standard normal critical values.
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Table A5: Contemporaneous responses of risk-neutral yields and term premia to monetary
policy shocks.

Daily Change Window Change

TP5 RNY5 TP10 RNY10 TP5 RNY5 TP10 RNY10

ED1 0.035∗∗∗ 0.398∗∗∗ 0.058∗∗∗ 0.377∗∗ 0.064∗∗∗ 0.587∗∗∗ 0.110∗∗∗ 0.492∗∗∗

(0.010) (0.126) (0.021) (0.154) (0.018) (0.142) (0.039) (0.161)

Observations 282 282 282 282 282 282 282 282
R2 0.044 0.177 0.027 0.149 0.084 0.219 0.052 0.159
Adjusted R2 0.041 0.174 0.023 0.146 0.081 0.216 0.049 0.156

ED2 0.036∗∗∗ 0.431∗∗∗ 0.063∗∗∗ 0.438∗∗∗ 0.068∗∗∗ 0.590∗∗∗ 0.119∗∗∗ 0.532∗∗∗

(0.010) (0.105) (0.022) (0.134) (0.016) (0.109) (0.035) (0.133)

Observations 282 282 282 282 282 282 282 282
R2 0.049 0.214 0.032 0.207 0.095 0.228 0.064 0.191
Adjusted R2 0.046 0.211 0.029 0.204 0.092 0.225 0.060 0.188

ED3 0.038∗∗∗ 0.458∗∗∗ 0.071∗∗∗ 0.505∗∗∗ 0.072∗∗∗ 0.571∗∗∗ 0.132∗∗∗ 0.547∗∗∗

(0.011) (0.074) (0.024) (0.084) (0.015) (0.081) (0.034) (0.095)

Observations 282 282 282 282 282 282 282 282
R2 0.052 0.227 0.038 0.258 0.101 0.201 0.074 0.190
Adjusted R2 0.048 0.224 0.034 0.255 0.098 0.198 0.071 0.187

ED4 0.035∗∗∗ 0.452∗∗∗ 0.067∗∗∗ 0.524∗∗∗ 0.070∗∗∗ 0.512∗∗∗ 0.134∗∗∗ 0.518∗∗∗

(0.011) (0.071) (0.024) (0.073) (0.015) (0.081) (0.034) (0.091)

Observations 282 282 282 282 282 282 282 282
R2 0.045 0.226 0.035 0.286 0.097 0.166 0.077 0.175
Adjusted R2 0.041 0.223 0.032 0.283 0.094 0.163 0.074 0.172

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The term premia and risk-neutral yields are estimated using the OSE: ∇yt model. The regression

is ∆FOMCy
(n),·
t = β0 + β1HFSt + εt. The dependent variable ∆FOMCy

(n),·
t is the daily changes in the

n-year term premium or term premium on the FOMC announcement dates or the t − 1-to-t + 1 changes
around FOMC announcement dates. TP5 and RNY5 denote the 5-year term premium and risk-neutral
yields, and those for the 10-year yield are denoted analogously. The high-frequency shock HFSs is the
30-minute change in the policy rate futures rate bracketing the FOMC announcement time. The shocks are
changes in ED1-ED4 during 30-minute windows bracketing FOMC announcements, available on Michael
Bauer’s webpage for Bauer and Swanson (2022b).
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